
11

ORNL is managed by UT-Battelle LLC for the US Department of Energy

I/O with Kokkos

Ana Gainaru

Kokkos Tea-Time

Jan 15, 2025

gainarua@ornl.gov

22

Summary

• The ADIOS I/O framework

• Kokkos applications using ADIOS

– Store and stream data

– Campaigns and querying

– Remote access to monitor the performance

• ADIOS using Kokkos

– GPU-backend

– Derived variables

33

What is ADIOS2

• High performance I/O abstraction to allow for on-line/off-line
memory/file data subscription service

– Declarative, publish/subscribe API is separated from the I/O strategy

Application Nodes/GPUs Data Size
per step

I/O speed

SPECFEM3D 3200/19200 250 TB ~2 TB/sec

GTC 512/3072 2.6 TB ~2 TB/sec

XGC 512/3072 64 TB 1.2 TB/sec

LAMMPS 512/3072 457 GB 1 TB/sec

– I/O engines provide different
strategies for data movement

– Operators can be added to
data transfers

– Metadata is computed for
queries on the reader side

https://github.com/ornladios/ADIOS2

https://github.com/ornladios/ADIOS2

44

A bit more on ADIOS
Simulation

Query

auto variable = io.DefineVariable<float>(”varName", shape, start, count);

adios2::Operator mgardOp =
 adios.DefineOperator("mgardCompressor", adios2::ops::LossyMGARD);

variable.AddOperation(mgardOp,
 {{adios2::ops::mgard::key::tolerance, tolerance}});

bpWriter.Put(variable, userKokkosView);

I/O library
Storage

Publish

Analysis

Subscribe

auto variable = io.InquireVariable<float>(”varName");

variable.SetSelection({start, count});
bpReader.Get(variable, userKokkosView);

adios2::QueryWorker w = adios2::QueryWorker(“varName < 1”, bpReader);

• Publish API
– Define an ADIOS variable

• With a certain global and
local shape

– Add an operator

– Publish data
• Aggregated in internal buffers

• Subscribe API
– Subscribe to data

– Query data

– Attach an accuracy

• I/O engines
– Keep the same code

– Switch the data
management solution

55

Self-describing Scientific Data

double BOUT_VERSION scalar = 5.2

double Bxy {68, 20} = 1 / 1

string Bxy/cell_location attr = "CELL_CENTRE"

string Bxy/direction_y attr = "Standard"

string Bxy/direction_z attr = "Average"

string Bxy/source attr = "Coordinates"

double G1 {68, 20} = 0 / 0

double G2 {68, 20} = 0 / 0

double G3 {68, 20} = 0 / 0

double J {68, 20} = 1 / 1

int32_t MXG scalar = 2

int32_t iteration 143*scalar = -1 / 141

 …

double n 143*{68, 20, 64} =

 -0.185305 / 0.0961174

double dx {68, 20} = 0.2 / 0.2

double dy {68, 20} = 1 / 1

double dz {68, 20} = 0.2 / 0.2

double g11 {68, 20} = 1 / 1

int32_t nx scalar = 68

int32_t ny scalar = 16

int32_t nz scalar = 64

double phi 143*{68, 20, 64} =

 -0.139167 / 0.0899946

string run_id scalar =

 "cfc9cd3d-3ec1-4238-8fa0-f75f97a9c949"

double t 143*scalar = 0 / 142

• BOUT++ hasegawa-wakatani-3d example, partial list of variables

143 output steps of a 3D array of double type and 68x20x64 dimensions, named n

global min = -3.76192 max = 4.05582

66

A few of our applications

• Wind Turbine (GE)

• Accelerator Physics (PIConGPU,
WarpX)

• Fusion (GTC, GE, M3DC1, XGC,
GENE, KSTAR)

• Cancer research

• Combustion (S3D)

• Climate (E3SM)

• Radio astronomy (SKA)

• Seismic Tomography Workflow

• Molecular dynamic (DeepDriveMD)

77

GPU-aware

• Allow applications to give ADIOS GPU buffers (Kokkos::View) directly
– Decrease number of copies of the data

– Allow ADIOS to use GPU direct to storage, compression on GPU, or other optimizations

– Transparent performance portability to different GPU architectures

• Build ADIOS2 with Kokkos support –D ADIOS2_USE_Kokkos=ON

• The user can provide a memory space
– If not set ADIOS2 will detect automatically the memory space

• ADIOS2 saves pointers to data and copies data to internal
CPU buffers
– Computes metadata for each Get/Put using CUDA kernels

 data.SetMemorySpace(adios2::MemorySpace::GPU);
 bpWriter.Put(data, gpuData);

Overhead for detecting

where buffers are allocated

CPU STD vector CUDA CPU buffer CUDA GPU buffer

5-6 μs 1-2 μs 1-2 μs

 Kokkos::View<float **, MemSpace> gpuData("data", Nx, Ny);
 bpWriter.Put(data, gpuData);

88

Summary

• The ADIOS I/O framework

• Kokkos applications using ADIOS

– Store and stream data

– Campaigns and querying

– Remote access to monitor the performance

• ADIOS using Kokkos

– GPU-backend

– Derived variables

99

1010

Remote access and campaigns

• Keep track of all datasets in a campaign

– Location for remote access

– Available variables and metadata

– Metadata management using SQLite

• Query or subscribe across multiple streams / files

– Remote / local access
$ adios2_campaign_manager info paper_sc24.aca

info archive
ADIOS2 Campaign Archive, version 0.1, created on 2024-07-23 16:38:13

hostname = OLCF longhostname = frontier.olcf.ornl.gov
 dir = /path/on/frontier/to/run1

 dataset = sim.bp created on 2024-07-23 13:35:18
 dataset = pdf.bp created on 2024-07-23 14:21:42
hostname = NERSC longhostname = perlmutter-p1.nersc.gov

 dir = /path/on/perlmutter/to/run2
 dataset = sim.bp created on 2024-07-22 10:25:05

Performance traces with TAU
could also be included in the
campaign

1111

1212

Summary

• The ADIOS I/O framework

• Kokkos applications using ADIOS

– Store and stream data

– Campaigns and querying

– Remote access to monitor the performance

• ADIOS using Kokkos

– GPU-backend

– Derived variables

1313

GPU-aware ADIOS2

• Publish/subscribe directly GPU
pointers

– For Kokkos::View we extract the
memory space and layout

• Internals

– Copy the data to adios2 internal buffers

– Compute metadata

• Min/Max of blocks of data

– Layout is handled by the adios2
variable dimensions

Device
buffer

Compute metadata

Put

Operator

Apply operator

Copy to host

ADIOS buffer

No
operator

1414

Performance

• When not collecting any
metadata

– Kokkos has the same performance
as the CPU backend

• Memory footprint

– CPU backend

• For chunks > 4MB

–Move data directly from the user
buffer

– Kokkos backend

• ADIOS2 always uses internal
buffers to hold the GPU data

• Currently we do not handle
memory accessible from the Host

* Results for weak scaling on Summit, 64GB of data per node
* We measure the overall write throughput for all nodes.

1515

Compression with GPU-aware I/O

• No changes required in the source code
– Operator attached to a variable

– Memory space attached to a variable

• Internal logic
– Metadata is computed using the GPU backend

– The operator is applied on the GPU buffer and the
compressed data is copied directly in the ADIOS buffer

auto var = io.DefineVariable<double>(”test", shape, start, count);

// define an operator
adios2::Operator varOp =
 adios.DefineOperator("mgardCompressor", adios2::ops::LossyMGARD);

//attach operator to variable
var.AddOperation(varOp, parameters);

var.SetMemorySpace(adios2::MemorySpace::GPU); // optional
bpWriter.Put(var, gpuSimData);

ADIOS variable

Put

Buffer

Memory Space

Compute metadata

Apply
operator

GPU backend

Operator

ADIOS2 buffer

Operators that support GPU buffers:
• MGARD, ZFP

• The operators need to be built with GPU

enable

1616

Basic performance

Metadata time when computing the
min/max using the CPU vs Kokkos backends

ZFP compression time when writing
compressed data for different

compression rates using the CPU vs
Kokkos backends

1717

XGC data compression on GPU

Cost of XGC f data compression in-place on GPU using MGARD. The GPU-Aware ADIOS
is used for moving data between GPU and host memory for I/O purposes, allowing

applications to seamlessly compress/decompress data directly on the GPU as part of

I/O. This is a strong scaling test of a fixed amount of f data where MGARD achieves 13x

reduction in file size. Reduction and writing is faster than writing the raw data, however,
it still incurs some extra time to read and to reconstruct the data.

Norbert Podhorszki, Scott Klasky, Ana Gainaru, Qian Gong, Jieyang Chen, Sanjay Ranka. The Benefits of Data Reduction for Fusion
Datasets. Poster at ICDDPS-4 conference, Apr 2023, Okinawa, Japan

1818

Derived quantities

• Data or quantities of interest
– Not specifically the result of the principal calculation of the

application

– Can be computed or extrapolated (derived) from primary data

• Why are they needed
– Queries and analysis

• Example S3D
– 1.5 TB per step (including temp, velocity, species information, etc)

– Visualize 2D slices of temperature

• Query on magnitude (instead of velocity) to identify areas of interest

– Analysis in-situ or on a remote server (or scientist laptop)

1919

Derived variables

• Offload derived variable
computation to ADIOS2
– Writer side solutions

• Store

• Workflows include analysis
computing and storing the required
derived data

– Reader side solutions

• Expression

• Analysis codes computing derived
variables on the fly (e.g. Paraview)

– Hybrid

• Stats

• Store only stats for derived variables

auto velocity = bpIO.DefineVariable<float>(
 ”velocity", shape, start, count);

 bpIO.DefineDerivedVariable("derived/magnitude",
 ”v = velocity \n”

 "magnitude(v)",
 adios2::DerivedVarType::StatsOnly);

2020

S3D

• The magnitude derived
variable has a size equal to the
number of particles
– The Store strategy adds 64 GB of

data for each simulated step

– For 900 ranks the stats are12 MB

• The Expression strategy requires
storing 256 GB on the remote
site

The Stats strategy has similar results
with Expression for in-situ and Stats

for remote access

2121

E3SM

• The size of the curl variables
is 4 GB

– The Store strategy adds 28 GB

– The stats for 96 ranks is 1 MB

• Stats strategy is 1.5x slower

– Curl has high complexity

– The curl values are needed by
the analysis

2222

Conclusion

• Applications using Kokkos can use ADIOS
directly to stream/store Kokkos::Views

– TAU has an the option of publishing ADIOS
variables which could allow monitoring the
performance in real time

– Remote access and querying is available
post-mortem or in real time

• ADIOS uses a Kokkos backend

– Allows GPU buffers to be transferred to the
compression library

• Derived variables

– Computed on the GPU, hiding the
computation cost

– Allows for hybrid and adaptive solutions

• Some links

– https://adios-io.org/

– https://github.com/ornladios/ADIOS2

Ana Gainaru
gainarua@ornl.gov

https://adios-io.org/
https://github.com/ornladios/ADIOS2

	Slide 1: I/O with Kokkos
	Slide 2: Summary
	Slide 3: What is ADIOS2
	Slide 4: A bit more on ADIOS
	Slide 5: Self-describing Scientific Data
	Slide 6: A few of our applications
	Slide 7: GPU-aware
	Slide 8: Summary
	Slide 9
	Slide 10: Remote access and campaigns
	Slide 11
	Slide 12: Summary
	Slide 13: GPU-aware ADIOS2
	Slide 14: Performance
	Slide 15: Compression with GPU-aware I/O
	Slide 16: Basic performance
	Slide 17: XGC data compression on GPU
	Slide 18: Derived quantities
	Slide 19: Derived variables
	Slide 20: S3D
	Slide 21: E3SM
	Slide 22: Conclusion

