
ArborX: a performance portable
geometric search library

Andrey Prokopenko (ORNL)

Daniel Arndt (ORNL)

Damien Lebrun-Grandié (ORNL)

Bruno Turcksin (ORNL)

Kokkos tea-time

November 20, 2024



Introduction

Introduction

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 2 / 36



Introduction

What is ArborX?

ArborX is an open-source performance portable geometric search library
based on MPI+Kokkos.

Geometric search: find geometric objects that are close in some sense.

Search
k-nearest neighbors (k-NN)

Range (radius search, intersections)

Ray Tracing
Clustering algorithms

Minimum spanning tree (Euclidean MST)

Density based clustering (DBSCAN, HDBSCAN*)

Interpolation
Moving least squares (MLS)

https://github.com/arborx/ArborX

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 3 / 36

https://github.com/arborx/ArborX


Introduction

Who uses ArborX?

NimbleSM contact mechanics

ALEGRA shock hydrodynamics

LGRT Lagrangian grid reconnection

deal.II finite element library

MCRT thermal radiation

Picasso particle-in-cell

HACC/CosmoTools clustering (dark

matter)

Cabana particle-based simulations

Adamantine additive manufacturing

STK mesh SIERRA/Trilinos meshing

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 4 / 36



Introduction

Why use ArborX?

Fast

Flexible interface

Performance portable (Kokkos)

Modern C++

Actively developed

Both on-node and distributed

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 5 / 36



Introduction

Who is developing ArborX?

Core development team

Daniel Ardnt

Damien Lebrun-Grandié

Andrey Prokopenko

Bruno Turcksin

Most are also Kokkos developers.

Contributors:

Ana Gainaru

Wenjun Ge

Piyush Sao

Yohann Bosqued

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 6 / 36



Introduction

ArborX in the scientific stack

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 7 / 36



Introduction

Why Kokkos?

Context: start of US DOE Exascale Computing Project in 2017

Facing the unknown beyond Summit (Nvidia GPUs)

SYCL not around a that time

RAJA? Kokkos? Roll our own?

Join forces with Kokkos

More than a programming model

Ecosystem with debugging and profiling tools, math libraries, etc.

Building a community

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 8 / 36



Core concepts

Core concepts

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 9 / 36



Core concepts

Bounding volume hierarchy (BVH)

Bounding volume hierarchy (BVH) is a tree structure on a set of geometric

objects, where each object is associated with a conservative bounding box.

14 11

13

♀7
♂2

10

♀0
9

♀6

♂4

12 ♀3

8 ♀1
♂5

14

12 13

8 3 10 11

9 0 2 7

4 6

5 1

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 10 / 36



Core concepts

Linear BVH

Impose order in which leaf nodes

appear in the tree (Z-curve/Morton

codes)

(courtesy of T. Karras, NVidia)

Each internal node is a linear range

over leaf nodes

The splits are determined according

to the highest bit that differs between

the Morton codes within the given

range

Can be constructed fully in parallel

0
0
0
0
1

0
0
0
1
0

0
0
1
0
0

0
0
1
0
1

1
0
0
1
1

1
1
0
0
0

1
1
0
0
1

1
1
1
1
0

0

3

4

1 2

5

6

0 1 2 3 4 5 6 7

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 11 / 36



Core concepts

Two flavors of search

Range search
Find all the data that satisfies a criteria (withing certain distance, intersects, etc.)

Optimized stackless traversal

Do two passes (count-and-fill) as the number of found object is not known

a priori

Multiple knobs to speed things up:

Early termination

Half traversal for pairs

Nearest search
Find the predefined number of the closest neighbors to a given object.

Single pass (know in advance how much memory is required)

Use stack instead of priority queue

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 12 / 36



Interface

Interface

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 13 / 36



Interface

Concepts

Search index is a container

of values

Can be anything (integers, geometries, user

types)

Values are transformed to

geometries through

indexable getter

Could be user provided for custom, or default

Bounding volumes can be

customized (AABBs, kDOPs,

OBBs)

AABB by default; could be user provided

template<typename MemorySpace,
typename Value,
typename IndexableGetter,
typename BoundingVolume>

class BVH {
template <typename ExecutionSpace, typename Values>
BVH(ExecutionSpace const& space,

Values const& values,
IndexableGetter const& indexable_getter);

template <typename ExecutionSpace, typename Predicates,
typename Callback>

void query(ExecutionSpace const& space,
Predicates const& predicates,
Callback const& callback) const;

template <typename ExecutionSpace, typename Predicates,
typename Callback,
typename Values, typename Offsets>

void query(ExecutionSpace const& space,
Predicates const& predicates,
Callback const& callback,
Values& values,
Offsets& offsets) const;

};

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 14 / 36



Interface

"Hello, world!" in ArborX

#include <ArborX.hpp>
#include <Kokkos_Core.hpp>
int main(int argc, charg *argv[]) {
Kokkos::initialize(argc, argv);
{

Kokkos::DefaultExecutionSpace exec;
// Build data structure
ArborX::BoundingVolumeHierarchy bvh(

exec, to-view({
{1.f, 1.f}, // 0
{2.f, 2.f}, // 1
{3.f, 3.f} // 2

}));
// Perform the search
bvh.query(exec, to-view(

ArborX::Nearest(ArborX::Point{0.f, 0.f, 0.f})
), KOKKOS_LAMBDA(auto /*predicate*/,

auto point /*value*/) {
printf("Nearest to origin is (%f, %f)\n",

point[0], point[1]);
});

}
Kokkos::finalize();
return 0;

}

Prints "Nearest to origin is (1, 1)"

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 15 / 36



Interface

Access traits

Customization point

Opt-in mechanism to tell

ArborX

where the data resides

how much of it

how to access

Allowed to specialize for

user-defined type

struct PointCloud {
float *d_x, *d_y, *d_z;
int N;

};

template <>
struct ArborX::AccessTraits<PointCloud>
{

using memory_space = Kokkos::CudaSpace;

static KOKKOS_FUNCTION
std::size_t size(PointCloud const &cloud) {

return cloud.N;
}
static KOKKOS_FUNCTION static ArborX::Point
get(PointCloud const &cloud, std::size_t i) {

return {{cloud.d_x[i], cloud.d_y[i], cloud.d_z[i]}};
}

};

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 16 / 36



Interface

User callbacks

Users may not care about the results themselves, or want a subset of the results.

For example:

Call a function on the results

May not need to store results, so less memory and single pass for spatial.

Use case: finding a particle with most neighbors (defined by a length), or particles

with a lowest potential (calculated as a function of friends)

Do results pruning

Use case: doing fine intersection search with the exact object geometry

Use processor-local information

Use case: compute interpolation coefficients for results using mesh parts on a

processor

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 17 / 36



Interface

User callbacks

template <typename MemorySpace>
struct Callback {

template <typename Query, typename Value>
KOKKOS_FUNCTION
void operator()(Query const &query, Value const& value) const {

auto data = ArborX::getData(query);
// do something

}
};

template <typename MemorySpace>
struct CallbackWithOutput {
template <typename Query, typename Value, typename Output>
KOKKOS_FUNCTION
void operator()(Query const &query, Value const& value, Output const &out) const {

auto data = ArborX::getData(query);
// store something as a result
out({...});

}
};

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 18 / 36



DBSCAN

Use case 1: DBSCAN

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 19 / 36



DBSCAN

Application

Cosmological simulation of the

universe.

Data is massive. For example,

30963 particles running on 64

MPI ranks for a small run. In

practice, 500M particles per

GPU.

Goal: find dense regions of

particles (halos) on each

simulation time step.

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 20 / 36



DBSCAN

Dbscan algorithm

Clustering: split a set of objects into disjoint classes

(clusters), so that objects in each class are more similar

to each other than to those in other classes.

DBSCAN is a clustering algorithm based on density.

Main advantages:

does not require to specify the number of clusters

can find arbitrary shaped clusters

has a notion of noise and is robust to outliers

It also has some disadvantages:

not fully deterministic (border points)

does not cope well with clusters of variable density

choosing its parameters can be difficult

Ester et al. "A density-based algorithm for discovering clusters in large spatial databases with noise." In Kdd, 96(34), pp. 226-231. 1996.

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 21 / 36



DBSCAN

Dbscan algorithm

Given two parameters, ε and minpts, Dbscan separates all points into three

classes:

core points: have at least minpts neighbors within ε

border points: not core points, but have a core point within ε

noise: all other points

Any cluster consists of a combination of core points (at least one) and border

points (possibly, none). Example below show minpts = 4.

Image by Chire, Wikimedia Commons, distributed under CC BY-SA 3.0

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 22 / 36



DBSCAN

F-DBSCAN (sparse)

Focus: use parallel neighbor

computation to minimize data

and thread divergence on

GPUs. Two phases:

preprocessing and main.

Use tree structure for

search (e.g., kd-tree or

BVH)

Determine core points in

preprocessing (terminate

early)

Implicit edges, execute

Union on collision

procedure F-Dbscan(X ,minpts, ε)
if minpts > 2 then

for each point x ∈ X in parallel do
determine whether x is a core point

for each pair of points x, y
such that dist(x, y) ≤ ε in parallel do
if x is a core point then

if y is a core point then
Union(x, y)

else if y is not yet a member of any cluster then
critical section:

mark y as a member of a cluster

mark y as a member of a cluster

Union(x, y)

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 23 / 36



DBSCAN

Results: performance portability

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 24 / 36



DBSCAN

Results: application proxy performance improvement

2020 2021 2022 2023
0.0

0.5

1.0

1.5

2.0

2.5

Ra
te

 [p
oi

nt
s/

s]

×108

1
2 3

4

5

6

7
8 9

Initial
FDBSCAN
FDBSCAN-DenseBox

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 25 / 36



EMST

Use case 2: Euclidean minimum
spanning tree (EMST)

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 26 / 36



EMST

Euclidean minimum spanning tree

A minimum spanning tree (MST) is a subgraph

of a weighted undirected graph that connects

all the vertices together, without any cycles and

with the minimum possible total edge weight.

A Euclidean MST (EMST) is a MST of the

distance graph of a set of points, i.e., a graph

where each pair of vertices are connected by

an edge of weight equal to the Euclidean

distance between them.

Applications: data clustering (e.g., HDBSCAN*),

Euclidean traveling salesman problem, wireless

network connectivity, computational fluid

dynamics, etc.

c/o Wikipedia

Our goal: fast EMST
computation for large (10M+)

dataset of low-dimensional

data.

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 27 / 36



EMST

Borůvka’s algorithm

a Initial state (each component having a single vertex).

b The state after a few Borůvka iterations.

c Closest neighbors from a different component for each vertex.

d The shortest outgoing edge for each component.

e The new components after the merge (the initial state of the

next Borůvka iteration).

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 28 / 36



EMST

The single-tree algorithm overview

The Borůvka’s algorithm is iterative. Each

iteration consists of two phases:

1 find the shortest outgoing edge for each

component (expensive!)
2 merge components

Finding the shortest outgoing edge: a

nearest-neighbor problem with a constraint
(the neighbor is from a different component).

Two optimizations are necessary to prune the

number of distance calculations:

skipping nodes in the same component

(subtree skipping)

maintaining an upper bound on the

distance of the outgoing edge candidates

Construct BVH from data

Initialize labels
[parallel for]

Propagate labels
to internal nodes
[parallel for]

Compute upper bounds on
the length of the shortest

outging edge for each component
[parallel for]

Find the shortest outgoing
edge for each component

[parallel for]

Merge components using the
found edges (update the labels)

[parallel for]

Only one
component?

no

Stop

yes

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 29 / 36



EMST

Subtree skipping

Goal: Reduce the number of tree

nodes encountered during the traversal.

Leaf node labels are component

membership of the data points.

Propagate the labels from the leaf

nodes to the internal nodes.

Same labels of children → parent

label. Different labels of children →
invalid parent label. Done in a single

bottom up traversal

Skip subtrees of the same label as

query during the traversal.

0 1 2 3 4 5 6 7

1 2 6

3 5

4

0

Very important on the later Borůvka

iterations, when the components are

large.

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 30 / 36



EMST

Datasets

Name Dim Size Description

Ngsim 2 ∼12,000,000 Car trajectories on three highways

Ngsimlocation3 2 ∼6,400,000 A subset of Ngsim (one highway)

PortoTax 2 ∼1,710,000 Taxi trajectories in Porto, Portugal

RoadNetwork3 2 ∼400,000 Road network of a Denmark province

GeoLife24M3 3 ∼24,000,000 User location data

Hacc37M 3 ∼37,000,000 Cosmological data from a simulation

Hacc497M 3 ∼497,000,000 Cosmological data from a simulation

VisualVar10M2 2 10,000,000 Synthetic data (Gan-Tao generator)

VisualVar10M3 3 10,000,000 Synthetic data (Gan-Tao generator)

Normal100M2 2 100,000,000 Normally distributed points

Normal300M2 2 300,000,000 Normally distributed points

Normal100M2 3 100,000,000 Normally distributed points

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 31 / 36



EMST

Parallel performance

Performance comparison of the EMST implementations using AMD EPYC 7763

(64 cores), Nvidia A100 and AMD MI250X (single GCD1).

GeoLife24M3D
RoadNetwork3D Ngsim

Ngsimlocation3
PortoTaxi

VisualVar10M2D
VisualVar10M3D

Normal100M3
Normal100M2

Uniform100M2
Uniform100M3

Hacc37M
0

50

100

150

200

250

P
er

fo
rm

an
ce

 in
 M

Fe
at

ur
es

/s
ec

12 6 9 8 10 11 13 12 13 16 14 16
1 10 7 9 6 13 15 10 8 8 9 17

45

79

180
197 198

227
238

212

243
224

182

270

21 26

103
117

129
140 150

131

162
151

120

180

MemoGFK(AMD-EPYC-7763) ArborX(AMD-EPYC-7763) ArborX(Nvidia-A100) ArborX (AMD- MI250X)

ArborX implementation is faster by 4-24× than MemoGFK on Nvidia A100

ArborX multi-threaded implementation is within factor 0.5-2× of MemoGFK
(the fastest available multi-threaded implementation)

(except GeoLife24M3D)

ArborX optimized for Nvidia A100 but not for AMD MI250X

1
GCD = Graphics Complex Die

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 32 / 36



EMST

Scaling

Effect of the dataset size on the parallel performance using AMD EPYC 7763

and Nvidia A100.

10
4

10
5

10
6

10
7

10
8

Number of samples

10
0

10
1

10
2

P
er

fo
rm

an
ce

 in
 M

Fe
at

ur
es

/s
ec

hacc_497M

MemoGFK
ArborX

10
4

10
5

10
6

10
7

10
8

Number of samples

10
0

10
1

10
2

P
er

fo
rm

an
ce

 in
 M

Fe
at

ur
es

/s
ec

normal300M2

MemoGFK
ArborX

10
4

10
5

10
6

10
7

10
8

Number of samples

10
0

10
1

10
2

P
er

fo
rm

an
ce

 in
 M

Fe
at

ur
es

/s
ec

uniform300M3

MemoGFK
ArborX

Performance increases with the number of samples until reaching

saturation

Asymptotically linear complexity of the algorithms

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 33 / 36



Future

Future

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 34 / 36



Future

What does future hold?

ArborX 2.0 (new interface!)

Documentation!

Performance improvements

OBB hierarchy, hierarchy structure optimization, low precision

New indexes

Octree, kd-tree

Approximate search

Very high dimensional (dim > 10) search

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 35 / 36



Future

Questions?

https://github.com/arborx/ArborX

prokopenkoav@ornl.gov

Andrey Prokopenko (ORNL) ArborX Kokkos tea-time 36 / 36

https://github.com/arborx/ArborX
mailto:prokopenkoav@ornl.gov

	Introduction
	Core concepts
	Interface
	DBSCAN
	EMST
	Future

