
TRICLADE for CExA

 Cédric Chevalier on behalf of François Letierce

 Comité de suivi de CExA – 2024.10.25

Disposition : Contenu + visuel

28/10/2022F. Letierce – CExA Triclade

Some Context

■ Study of Turbulent Mixing Zone:
■ Created and developed at fluids interface ;
■ From shock, expansion, acceleration, …
■ Dynamic and structure not fully understood.

■ TRICLADE:

■ Turbulent binary mixing in a highly compressible
environment

■ Navier-Stokes equations

■ Structured Cartesian Mesh

■ « Shock-capturing » numerical schemes

F. Letierce – CExA Triclade

Technical Context

■ Legacy code (almost 30 years old)

 ≈ 100 000 lines of C « ++ »

 Modularity : 1 scheme = 1 module

 Few external dependencies

 MPI, FFTW

 Quite a lot of internal libraries (IO, initialization, etc.)

 Proprietary data format…

 A lot of tooling scripts : configuration, launch

 Mainly python

F. Letierce – CExA

First development

■ Needs from CEA DAM / CExA

■ GitLab CEA « inti »

■ Documentation

■ User and developer

■ build system upgrade

■ Non standard Makefile => CMake

■ Development and set up of a testing suite

■ Backup reference results

F. Letierce – CExA Triclade

5th
Space order

Triclade GPU port was
decided

M5
Numerical

scheme

Regardless of the
CExA initiative

3rd
Time order

Focusing on currently
most used features

few
Limiters and
extrapolation

methods

Impacted modules are
roughly 10 000 LoC

hllc2
flux

+ yet to be discovered
dependencies...

Porting Triclade to GPU

■ Replace code « Variables » custom data structure with Kokkos ::View
 Several types of variables :

 Primitive → lifetime : the whole execution
 Conservative → lifetime : method or class instance
 Thought of generic management of these different kinds with CExA (DDC?)

 Collection of variables ?
 Investigations in progress with CExA

■ Rewrite computing loops

■ Threadsafe ? If not, deeper refactoring
■ Parallel_for + Lamba/Functor

■ Some thoughts to exploit hierarchiecal

■ Teams along geometrical axis

F. Letierce – CExA Triclade

Migrating to Kokkos

■ Design and implementation of test frameworks
 Help assessing code validity
 Use of LevelDB (lib Google)
 Backup of reference results
 Comparisons

 Using a customisable threshold

■ No abstraction over Kokkos
 From other Kokkos migrations

■ Simple changes for code « init »
 New options for the user
 New method overloads for Kokkos::View

F. Letierce – CExA

Current state

■ Handling both legacy and Kokkos’ variables
 Types POD(*****)

 Explicitly passed as parameters for functions/methods

 Memory allocation :
 In scattered functions
 Called everywhere: from main, inside objects or functions

 Use of generic abstract methods everywhere : hard to modify

F. Letierce – CExA

Some technical issues

■ Considerably more refactoring than expected
 Hardcoded data type → the subset to port cannot be trivially isolated

(From 10K lines impacted to 100K ...)
 Fork + deletion of other code paths
 Massive string replacement (sed + regex + AI + prayers)
 Setup a small abstraction mechanism + interface update

■ Incremental changes strategy
 Expensive
 Intermediate numerical validations at each steps
 Use of a small proxy for data: [i][j][k] ↔ (i,j,k)

 Brak project from CExA

F. Letierce – CExA

Some technical issues

F. Letierce – CExA

Conclusion
■ GPU port of Triclade has begun (but with some delays due to the necessary pre-port refactoring)
■ Goal is still a first Grace-Hopper (Exa1 HE) run with some GPU offloads by the end of the year

■ The preliminary overview has underestimated some difficulties (interdependent):
 The lack of common abstraction for data types (nested raw pointers)
 Generic abstract calls for module methods making module tightly coupled
 (The lack of a proper testing framework)
 (The technical debt of an old legacy code,+2500 compilation warnings with modern compilers,

Bugs, Memory Leaks, no multi-threading)
■ These difficulties are not related to Kokkos : adapting an existing code as some drawbacks comparing

to write a new one
■ Being close to CExA has considerably helped to

 Design and choose technical designs (by exploiting the shared community knowledge)
 Ease development by developing some helper tools

■ Other CExA developments are of interest and will be used later
 Kokkos-COMM, Kokkos-FFT, ...

Thank you

