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Some Context

■ Study of Turbulent Mixing Zone: 
■ Created and developed at fluids interface ;
■ From shock, expansion, acceleration, …
■ Dynamic and structure not fully understood.

 

■ TRICLADE:

■ Turbulent binary mixing in a highly compressible 
environment

■ Navier-Stokes equations

■ Structured Cartesian Mesh

■ « Shock-capturing » numerical schemes
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Technical Context

 

■ Legacy code (almost 30 years old)

 ≈ 100 000 lines of C « ++ »

 Modularity : 1 scheme = 1 module

 Few external dependencies

 MPI, FFTW

 Quite a lot of internal libraries (IO, initialization, etc.)

 Proprietary data format…

 A lot of tooling scripts : configuration, launch

 Mainly python
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First development

■ Needs from CEA DAM / CExA

■ GitLab CEA « inti »
 

■ Documentation

■ User and developer

■ build system upgrade

■ Non standard Makefile => CMake

■ Development and set up of a testing suite

■ Backup reference results
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Porting Triclade to GPU



■ Replace code « Variables » custom data structure with Kokkos ::View
 Several types of variables :

 Primitive → lifetime : the whole execution
 Conservative → lifetime : method or class instance
 Thought of generic management of these different kinds with CExA (DDC?)

 Collection of variables ?
 Investigations in progress with CExA

 
■ Rewrite computing loops

■ Threadsafe ? If not, deeper refactoring
■ Parallel_for + Lamba/Functor

 
■ Some thoughts to exploit hierarchiecal

■ Teams along geometrical axis
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Migrating to Kokkos



■ Design and implementation of test frameworks
 Help assessing code validity
 Use of LevelDB (lib Google)
 Backup of reference results
 Comparisons

 Using a customisable threshold

■ No abstraction over Kokkos
 From other Kokkos migrations

■ Simple changes for code « init »
 New options for the user
 New method overloads for Kokkos::View
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Current state



■ Handling both legacy and Kokkos’ variables
 Types POD(*****)

 Explicitly passed as parameters for functions/methods
 

 Memory allocation :
 In scattered functions
 Called everywhere: from main, inside objects or functions

 Use of generic abstract methods everywhere : hard to modify
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Some technical issues



■ Considerably more refactoring than expected
 Hardcoded data type → the subset to port cannot be trivially isolated

(From 10K lines impacted to 100K ...)
 Fork + deletion of other code paths
 Massive string replacement (sed + regex + AI + prayers)
 Setup a small abstraction mechanism + interface update

■ Incremental changes strategy
 Expensive
 Intermediate numerical validations at each steps
 Use of a small proxy for data: [i][j][k] ↔ (i,j,k)

 Brak project from CExA
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Some technical issues
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Conclusion
■ GPU port of Triclade has begun (but with some delays due to the necessary pre-port refactoring)
■ Goal is still a first Grace-Hopper (Exa1 HE) run with some GPU offloads by the end of the year

■ The preliminary overview has underestimated some difficulties (interdependent):
 The lack of common abstraction for data types (nested raw pointers)
 Generic abstract calls for module methods making module tightly coupled
 (The lack of a proper testing framework)
 (The technical debt of an old legacy code,+2500 compilation warnings with modern compilers,  

Bugs, Memory Leaks, no multi-threading)
■ These difficulties are not related to Kokkos : adapting an existing code as some drawbacks comparing 

to write a new one
■ Being close to CExA has considerably helped to

 Design and choose technical designs (by exploiting the shared community knowledge)
 Ease development by developing some helper tools

■ Other CExA developments are of interest and will be used later
 Kokkos-COMM, Kokkos-FFT, ...



Thank you


