cea irfm

Demonstrator 1: Gysela-X++ Goal: Exascale plasma turbulence simulations

<u>V. Grandgirard</u>¹ & GYSELA team, E. Bourne², CExA team³, A. Hoffmann⁴, P. Vidal⁴

¹ CEA/IRFM, France ³ CEA/MdIS, France ² SCITAS/EPFL, Switzerland
⁴ IPP Garching, Germany

CExA Steering Commitee October 25, 2024

GYSELA code for exascale plasma turbulence simulations

- Gyrokinetic plasma turbulence simulations to understand turbulent transport that mainly governs confinement in Tokamaks
- GYSELA developed at IRFM/CEA code over 20 years thanks to strong EU collaboration between physicists, mathematicians and HPC specialists
 - MPI/OpenMP Fortran90 code optimized up to 730k CPU cores
 - Relative efficiency of 85% on more than 500k cores and 63% on 730k cores on CEA-HF (AMD EPYC 7763)
- Intensive use of petascale resources: \sim 150 millions of hours / year (GENCI + PRACE + HPC Fusion resources)

Exascale needs for ITER plasma turbulence simulations

Roadmap for GYSELA towards exascale simulations Development of a new code Gysela-X++ \Rightarrow Why ?

- HPC challenge : A portable code on new exascale architectures
 - Heterogeneous accelerated nodes are extremely challenging
 - \rightarrow modern C++ with MPI + Kokkos [E. Malaboeuf (CINES) 2024-2027
- **More physics** \rightarrow new numerical challenges
 - More realistic density & temperature gradients at edge-SOL
 - \rightarrow SL scheme for non-uniform meshes [E. Bourne (CEA) 2020-2023]
 - X-point geometry
 - \rightarrow SL scheme for multi-patches
 - \rightarrow 2D multi-patches poisson solver [A. Hoffmann (IPP) 2023-2026]
 - Stellarator configuration
 - \rightarrow 3D scalable Poisson solver

[P. Vidal (IPP) PhD 2022-2025]

Roadmap for Gysela-X++ code towards exascale

First objective: Efficient parallel code to exploit Alice Recoque resources

2022	2023	2024	2025	2026	2027	2028
PTC simulation DOSE						
		Ec	oCoE-III proje		(a Daat	
	BPI / Renaissance Startup					
		Voicexx G	ysela-Axi	Gysela-X++	Gy	/sela-Stellaratoı ♦
		TODA	NY	A. Recoque		

A modular framework based on multiple libraries

- Modern C++ with MPI + Kokkos based on external libraries:
 - DDC https://github.com/CExA-project/ddc: A discrete domain computation library to offer to the C++/MPI world an equivalent to the xarray.DataArray/dask. DDC relies on Kokkos and mdspan to offer CPU/GPU performance-portable multi-dimensional arrays and iterators.
 - Kokkos-kernels for FFT and Splines [Y. Asahi et al., 2024]
 - Gingko https://ginkgo-project.github.io/ or eigen for Linear Algebra
 - libkoliop https://gitlab.com/cines/code.gysela/libkoliop for collision operator
 - PDI Data Interface https://github.com/pdidev/pdi for I/O
- Pros: Takes advantage of optimisation of each library on accelerated architectures
- \blacksquare Cons: Complex installation \rightarrow Need for robust packaging tools (spack, GUIX, ...)

Gyselalibxx: A collection of C++ components

for writing gyrokinetic semi-lagrangian codes

- Computing kernels ready for non-uniform meshes + WIP for multi-patches.
 - Vlasov solver
 - Advection operators
 - Collision operators
 - Source terms
 - Poisson solvers

V. Grandgirard

Vlasov-Poisson simulations

- 1X-1V Landau damping
- 1X-1V Bump-on-Tail instability
- 2X-2V Landau damping

https://github.com/gyselax/gyselalibxx/

Packaging via spack or Guix + Doxygen doc. + Cl integration (425 tests)

First prototype (2D mono-GPU): Voicexx code 1X-1V semi-Lagrangian Vlasov code for sheath simulations

- See [E. Bourne et al., 2023] for numerics & [Y. Munschy et al., 2023] for physics
- CExA demonstrator fully based on Kokkos: Portable on multi-architectures

Ready for physics: neutrals [PhD M. Perey] + AI: PINN's studies (NTU Singapore)

irfm V. Grandgirard

WIP: 4D multi-GPU prototype: Gysela-Axi code

(2X-2V) semi-Lagrangian code for axisymmetric neoclassical simulations

- All the pieces of the puzzle are being put together
 - 2D advection in (r, θ) + 1D advection in v_{\parallel}
 - Non-uniform 1D and 2D splines developed in DDC via PTC simu + optimized with kokkos-tools via Moonshot CExA
 - 2D poisson solver in (r, θ)
 - 2D collision operator (v_{\parallel}, μ)
 - translated from GYSELA F90 into C++ & Kokkos
 - $\rightarrow\,$ libkoliop with an interface for both GYSELA F90 and Gysela-X++
 - MPI transposition
- Objective: end 2024 (EoCoE-III milestone)
 - Designed to work on multi-GPU optimization but also for physics:
 - Neoclassical effects with shaping and impurities [PhD L. De Gianni]

Conclusion & Perspectives (1/2)

- A full based Kokkos ecosystem under development for gyrokinetic turbulence simulations → Long time collab. with MdIS + Moonshot CExA clearly a booster
 - \rightarrow Exascale electromagnetic simulations for ITER plasma & stellarator

Conclusion & Perspectives (2/2)

Not possible without a strong collab. between HPC specialists, mathematicians and physicists

- Each prototype designed to be exploited by physicists
- Future work with CExA team (non-exaustive list):
 - 1. Optimized 6D transposition (3X-2V-species)
 - 2. Optimised 3D and 4D splines
 - 3. Training for new developers and for users
 - 4. Improvement of the readability
 - 5. Continuous Integration on multi-machines
- Missing numeric kernels for Gysela-X++ with X-point:
 - gyroaverage (will be extracted from GYSELA F90)
 - Vlasov + Poisson on multi-patches

Aknowledgments

Special thanks to E. Bourne & T. Padioleau & J. Bigot

Many thanks to the CExA team

- CEA/IRFM France: P. Donnel, A. Kara, B. Legouix, Y. Munschy, K. Obrejan
- MdIS CEA/Saclay France: Y. Asahi, M. Benoit, J. Bigot, T. Padioleau, Y. Wang
- ACH EPFL/SCITAS Switzerland: E. Bourne, M. Peybernes
- IPP Garching Germany: A. Hoffmann, P. Vidal, E. Sonnendrücker
- HLST CINES/Montpellier France: E. Malaboeuf

Founded by PTC simu DOSE + Moonshot CExA + EoCoE-III projects