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Overview — The GyselaX++ code

Gysela is a massively parallel Fortran code developed since 2001 at IRFM in
strong collaboration between physicists, mathematicians and computer
scientists. (IPP Garching, INRIA, Maison de la Simulation, EPFL, CINES...)

Aims to simulate turbulent transport in future magnetic confinement fusion
devices.

Provides understanding on underlying physics and permits exploration of design
choices to improve the performance of future machines.

GyselaX++ , a complete state-of-the-art
rewrite of the Fortran code in C++:

Adapt to exascale architectures: Support GPUs, be
scalable, avoid idling of computation ressources to
get closer to the performance required to simulate
ITER-like plasma.
Proper software architecture: Benefit from modern
C++ features to minimize execution-time
overhead and produce modular code.
Handle realistic geometries & optimized meshes:
Non-circular magnetic configurations, X-point,
appropriate meshing in regions of interest...
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Overview — The DDC library

DDC is a C++ scientific computing library developed at
Maison de la Simulation, aiming to support zero-overhead
dimension labelling for multi-dimensional arrays and
performance portable multi-dimensional algorithms.

Describes in the same object a discrete function and the mesh on which its
defined, with labeled dimensions.

Mostly based on Kokkos (performance portability). Support major Kokkos
backends (OpenMP, CUDA and HIP).

Supports high-dimensionnal spaces and abstractize dimensions through C++
templates (managed at compile-time, zero-overhead abstractions).

Provides convenient and optimized classes to describe basis functions (uniform
or non-uniform) and change of basis kernels. ← Object of my contribution
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Overview — The Vlasov-Poisson problem

Minimal academic problem modeling plasma in a kinetic context:

Vlasov (Mechanics): ∂fs
∂t

+ p⃗
ms

∂fs
∂x⃗

= qs∇⃗Φ · ∂fs
∂p⃗

→ Semi-Lagrangian Method

Poisson (Electrostatics): ∆Φ = − ρ
ϵ
→ Spectral method or Finite Elements Method

Charge: ρ =
∑

s qs
∫
fsdv⃗ → Reduction

With fs(x⃗, p⃗, t) the distribution function for species s (electrons or deuterium
ions most of the time), Φ the electric potential and ρ the electric charge. Note
that fs is 6D function evolving in time in general case ! → Main reason of HPC
requirement.
Important remark: all three numerical schemes involve change of basis
function!

Vlasov (advection) is solved using Semi-Lagrangian method which involves
interpolation, which is itself a combination of basis changes (δ1 → B → δ2).
Poisson can be solved using:

Spectral method: using Fourier basis function (see next slide).
Finite Elements Method over a function space.

Charge computation is numerical integration over velocity space, which is no more
than a sum of basis function coefficients.

⇒ Changes of basis functions are centrals in Gysela and optimizing the
numerical tool which performs them is strategic!
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Change of basis function — Change of basis function as DDC kernels

Interfacing numerical tools with DDC requires to think the mathematical objects &
operations abstractly:

DDC provides types to describe dimensions (and build spaces), discrete spaces
and discrete functions. Basis functions are themselves spaces (ie. Fourier
space) and are thus described as such.

Usual discrete functions representation (values of the function at each point of
the mesh) is the same as any other: set of coefficients in the particular basis
function of Dirac impulses δ. In some sense we generalized the concept of
mesh.

Underlying data structures are managed by DDC and accessed through its API.

Change of basis functions are implemented as DDC kernels and are build on
well-recognized computation libraries (ie. cuFFT or Ginkgo), with transparent
portability.
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Change of basis function — Fourier transform

Computation of the discrete Fourier transform with:

ck =< f |eikx >=
∑
j

f(xj)e
ikxj dxj

Is a O(n2) problem. It can be reduced to O(n log(n)) with the fast Fourier transform
algorithm. Optimized implementations up to 3D are available in FFTW, cuFFT and
hipFFT.

Convenient bridges to those libraries taking DDC objects as arguments have
been implemented in DDC, in a similar fashion to Kokkos spirit.

It also computes the spectral mesh (discrete Fourier basis function) in the
Fourier space from the spatial mesh.

It is used in a simple version of the GyselaX++’s Poisson solver (spectral
method):

∆Φ = −ρ

ϵ
⇒ Φ̃ =

1

ϵ||⃗k||2
ρ̃
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Change of basis function — Spline transform

Piecewise polynomial basis function with very good derivability properties (Spline of
degree d is Cd−1).
1D Splines computation is a multiple-rhs quasi-band linear problem AX = B:



∗ ∗ 0 0 0 · · · 0 0 0 ∗
∗ ∗ ∗ 0 0 · · · 0 0 0 ∗
0 ∗ ∗ ∗ 0 · · · 0 0 0 ∗
0 0 ∗ ∗ ∗ · · · 0 0 0 ∗
0 0 0 ∗ ∗ · · · 0 0 0 ∗
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
0 0 0 0 0 · · · ∗ ∗ 0 ∗
0 0 0 0 0 · · · ∗ ∗ ∗ ∗
0 0 0 0 0 · · · 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗





c11 · · · c1nb
c21 · · · c2nb
c31 · · · c3nb
c41 · · · c4nb
c51 · · · c5nb

.

.

.
.
.
.

c(n−3)1 · · · c(n−3)nb
c(n−2)1 · · · c(n−2)nb
c(n−1)1 · · · c(n−1)nb

cn1 · · · cn nb


=



f11 · · · f1nb
f21 · · · f2nb
f31 · · · f3nb
f41 · · · f4nb
f51 · · · f5nb

.

.

.
.
.
.

f(n−3)1 · · · f(n−3)nb
f(n−2)1 · · · f(n−2)nb
f(n−1)1 · · · f(n−1)nb

fn1 · · · fn nb


With X and B matrices of typical sizes nrow ∼ 1000 and ncols ∼ 107.

Requires performant appropriate solver.

Columns of X and B correspond to independant linear systems → very
suitable for parallelization.

Memory layouts must be managed with great attention.
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Change of basis function — Memory layout management

Memory layout permutation
& slicing algorithm to format
the data.

Multiple linear solvers are
called sequentially and in
parallel to process small
chunks of data.

Aims to comply to Ginkgo
constraints (right layout,
maximum size limit) and
improve memory access.
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Performance — Evaluation of Ginkgo as a backend to Splines kernel

We compare the new GPU implementation based on Ginkgo library with the legacy
CPU-only Lapack-based implementation:
Lapack *gbsv:

Direct method (computes
solution using triangular
factorization method).

Optimized for our problem
structure (quasi-band).

CPU-only.

Ginkgo BiCGStab:

Iterative method (converges
toward the solution).

Appropriate for all sparse
problems but cannot benefit
from band structure.

Optimized on GPU.

Benchmark test is pure advection based on characteristics method (interpolations).

100x100 (100 iterations):

Lapack Serial 5s
Ginkgo Serial 7s
Ginkgo OpenMP 160ths 2.4s
Ginkgo CUDA A100 1.2s

1000x10000 (100 iterations):

Lapack Serial 4872s
Ginkgo Serial 6941s
Ginkgo OpenMP 160ths 217s
Ginkgo CUDA A100 83s

⇒ Lapack algorithm seems a bit more suitable than Ginkgo’s for our problem
(×1.4) but benefit from parallelism is obviously advantageous!
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Performance — Parallelizability

Splines on CPU and GPU with Ginkgo backend are benchmarked on pure advection
problem based on characteristics method (interpolation).

Bandwidth is nx × ny × sizeof(double)/t.
Perfect scaling is the curve for which execution time is constant while we
increase the size of the problem.

⇒ GPU scales better than CPU but saturates before.
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Performance — Sequential slicing

Problem is sliced in subproblems and impact of subproblems sizes on performance has
been benchmarked.
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Performance — Parallel slicing

Subproblems are themselves sliced in subsubproblems called in parallel, and impact
on performance has been benchmarked.
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Performance — Preconditionning

Preconditionning is beneficial for iterative methods (but quasi-band is already well-
conditionned). However there is an issue with Ginkgo Block-Jacobi preconditionner
on GPU which is prohibitive for performance.

⇒ An optimal solver configuration is identified on both CPU and GPU.
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Performance — GyselaX++

GyselaX++ contains three main modules: Vlasov and Poisson solvers, and charge
computation. In the current state of the project, charge computation for LandauXYVxVy
does not yet benefit from new Splines kernel and parallelism. This work will be made
in coming months.

XYVxVy 64× 64× 127× 127:

Lapack Serial 2846s
Ginkgo Serial 4400s
Ginkgo OpenMP 160ths 228s
Ginkgo CUDA A100 240s

OMP CUDA
Vlasov 129s 74s
Poisson 0.2s 0.08s
Charge (CPU Serial) 82s 146s
Others 17s 20s

Investigation is ongoing to understand why charge computation is slower when com-
piled with nvcc (CUDA compiler) whereas this is a purely CPU Serial section.

⇒ GyselaX++ is already partially parallelized and ported to GPU! However,
gain on Vlasov solver with GPU compared to CPU is not so good.
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Conclusion —

DDC is getting a new feature that is very usefull for scientific computing:
change of basis functions.

A performance portable FFT has been integrated in DDC.

Parallellization of Gysela’s spline transform for CPU and GPU is ongoing,
with good solutions already implemented and successfully tested in simplest
cases.

PTC roadmap:
Support non-periodic boundary conditions.
Support multidimensional splines.
Interface with Gysela xyvxvy case and validate performance.
Support polar splines.
Interface with Gysela rθv||v⊥ case and validate performance.

Optimization is a long-term task that will be decisive for Gysela’s capability to
make the most of exascale machines and produce new scientific results from
simulations that has never been done before.
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Backup slides — Turbulent transport in a nutshell

A DT−fuelled tokamak can be a fusion reactor
only if Rconfinement ≥ 5 MW.m−2.K−1. This
heat resistance is a 0−order model involving:

Geometry (but impacts on Cth and Pfusion too).
Magnetic field (constraint by magnets technos.).
Radiative transfert.
Collisionnal diffusion.
Turbulent transport ⇐ main channel!

Remark: plasma physicists prefer confinement time τc = Rconfinement × Cth.

Figure: The E ∧B staircase of magnetised plasmas, G.
Dif-Pradalier, G. Hornung, X. Garbet, Ph. Ghendrih

Baptiste Legouix PTC - Discretization Oriented Software at Exascale 2 / 11



Backup slides — GyselaX++ roadmap

Develop a performant 2D+2D circular case is complex enough to keep
programmers busy for a while, but little interest for modern physics (no
turbulence, no magnetic field gradient). This milestone should be reached in
2024.

Next step: introduce Gyrokinetics to describe a full tokamak geometry with 5D
distribution function (one dimension is removed based on the physical argument
ωturb ≪ ωlarmor at the cost of a very complex coordinates transformation).

Remark: all three numerical schemes involve changes of basis function !
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Backup slides — General theory on change of basis function

Every (discrete) function can be described in a (discrete) Hilbert Space as a linear
combination on a basis function ϕi:

f(x) =
∑
i

ciϕi(x)

f is then entirely defined by the values of ci. We distinguish two cases:

Orthogonal basis function. Defining the inner product:

< a|b >=

∫
a(x)b(x) dx

We have < ϕi|ϕj >= δij . Thus, ci =< f |ϕi > is verified (but do not
necessarily provide the optimal computation method, ie. Fourier transform).

Non-orthogonal basis function: requires to solve linear problems specific to
chosen basis function. ie. Lagrange elements or B-splines.
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Backup slides — 1D B-splines

Piecewise polynomial basis function with very good derivability properties (B-spline
of degree d is Cd−1). Leads to a global “quasi-band” linear problem:

∗ ∗ 0 0 0 · · · 0 0 0 ∗
∗ ∗ ∗ 0 0 · · · 0 0 0 ∗
0 ∗ ∗ ∗ 0 · · · 0 0 0 ∗
0 0 ∗ ∗ ∗ · · · 0 0 0 ∗
0 0 0 ∗ ∗ · · · 0 0 0 ∗
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 · · · ∗ ∗ 0 ∗
0 0 0 0 0 · · · ∗ ∗ ∗ ∗
0 0 0 0 0 · · · 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗





c1
c2
c3
c4
c5
...

cn−3

cn−2

cn−1

cn


=



f1
f2
f3
f4
f5
...

fn−3

fn−2

fn−1

fn


With band width w = d − 1. Lasts rows and columns correspond to boundary
conditions. It can be shown that this problem is factorizable in a “big” band linear
problem followed by a “small” dense linear problem.

⇒ Using a performant band linear solver is very beneficial!
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Backup slides — Linear band solvers on GPU

Two very different approches are considered:

Block Tridiagonal Factorization:

Direct method (computes
solution using arithmetic
operations).

Made for tridiagonal block but
very appropriate for band
structure.

Hard to parallelize (but wait next
slide).

⇒ Long-term solution, probably
the most performant but also the

most complicated.

BiCGStab:

Iterative method (converges
toward the solution).

Appropriate for all sparse
problems but cannot benefit
from band structure.

Optimized on GPU in Ginkgo.

⇒ Short-term solution, already
developed.
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Backup slides — nD B-splines and batched linear band solver

It can be shown that if multidimensional B-splines can be written as ϕ(x, y...) =
ϕx(x)ϕy(y)... then the nD change of basis is a succession of 1D batched change of
basis, each of them corresponding to linear problems of the form:



∗ ∗ 0 0 0 · · · 0 0 0 ∗
∗ ∗ ∗ 0 0 · · · 0 0 0 ∗
0 ∗ ∗ ∗ 0 · · · 0 0 0 ∗
0 0 ∗ ∗ ∗ · · · 0 0 0 ∗
0 0 0 ∗ ∗ · · · 0 0 0 ∗
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 · · · ∗ ∗ 0 ∗
0 0 0 0 0 · · · ∗ ∗ ∗ ∗
0 0 0 0 0 · · · 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗





c11 · · · c1nb

c21 · · · c2nb

c31 · · · c3nb

c41 · · · c4nb

c51 · · · c5nb

... · · ·
...

c(n−3)1 · · · c(n−3)nb

c(n−2)1 · · · c(n−2)nb

c(n−1)1 · · · c(n−1)nb

cn1 · · · cn nb


=



f11 · · · f1nb

f21 · · · f2nb

f31 · · · f3nb

f41 · · · f4nb

f51 · · · f5nb

... · · ·
...

f(n−3)1 · · · f(n−3)nb

f(n−2)1 · · · f(n−2)nb

f(n−1)1 · · · f(n−1)nb

fn1 · · · fn nb


With X and B matrices of size nx × nynz... for the first system, ny × nxnz... for
the second etc. Typically, n = 1000 and nb ∼ 107.

Columns of X and B correspond to independant linear systems → very
suitable for parallelization.

Memory layouts must be managed with great attention.
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Backup slides — LU block-decomposition of quasi-band problem

To solve this linear problem AX = B we represent A as a block matrix which can be
block-LU factorized:(

Q γ
λ δ

)
=

(
Q 0
λ δ − λQ−1γ

)(
I Q−1γ
0 I

)
Leading to two distinct linear systems:


(
Q 0
λ δ − λQ−1γ

)
X ′ = B(

I Q−1γ
0 I

)
X = X ′

Substitutions give:


(
Q 0
0 δ − λQ−1γ

)
X ′ =

(
B1

B2 − λX ′
1

)
X =

(
X ′

1 −Q−1γX ′
2

X ′
2

)

Constructor

β ← solve Qβ = γ;

Operator()

X ′
1 ← solve QX ′

1 = B1;
X2 ← solve (δ − λβ)X2 = B2 − λX ′

1;
X1 ← X ′

1 − βX2;

Note that solving QX ′
1 = B1 is by far the

most costly operation because of dimen-
sions of Q.
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Backup slides — Cartesian product of 1D B-splines (1/2)

We assume that 1D problems could be independently written in the forms:

A1X1 = B1

A2X2 = B2

Thus the 2D problem can be written:

(A1 ⊗A2)vec(X) = vec(B)

We will use four mathematical theorems:

For two tensors T1 and T2:

T1 ⊗ T2 = (T1 ⊗ I)(I ⊗ T2)

Also:
(T1 ⊗ T2)vec(T3) = vec(T2T3T

⊤
1 )

With K the commutation matrice:

K(T1 ⊗ T2)K
⊤ = T2 ⊗ T1

We also have:
K⊤ vec(T ) = vec(T⊤)
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Backup slides — Cartesian product of 1D B-splines (2/2)

We show that it leads to two matrix-matrix linear systems:

(A1 ⊗A2)vec(X) = vec(B)

(A1⊗I)(I⊗A2)vec(X) = vec(B)

K(I⊗A1)K
⊤(I⊗A2)vec(X) = vec(B)

K(I⊗A1)K
⊤vec(A2XI⊤) = vec(B)

K(I ⊗A1)vec(X
⊤A⊤

2 ) = vec(B)

Kvec(A1X
⊤A⊤

2 I
⊤) = vec(B)

vec(A2XA⊤
1 ) = vec(B)

A2XA⊤
1 = B

A1(A2X)⊤ = B⊤

Or in indicial notations:

A1ijA2lkXkj = Bli

Thus we have to solve:{
A1Y = B⊤

A2X = Y ⊤
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Backup slides — GPU memory occupancy

The slicing algorithm requires buffers which leads to GPU memory occupancy over-
head:
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