Kokkos, a sustainable
performance
portability layer

co-developed by CExA, a project for
Computing at Exascale on Accelerators at CEA

@0 2 8 8

Dr. Cédric Chevalier ~ Dr. Hariprasad Kannan Dr. Mathieu Lobe!

@@&QQ

Dr. Paul Zehn Dr. Rémi Bar Dr. Thomas Padioleal Dr. Yuuichi Asahi Paul Gannay

ORAP Forum e
May 19" 2025 =6
Julien Bigot, the CExA, Kokkos & HPSF teams

Context 1+ yearago

s HPC is atool in a wide range of domains at CEA

= We just entered the Exascale era, that means GPU (>82% Top500) "™

m European pre-Exascale systems: Mix of AMD & Nvidia
m US Exascale systems: AMD & Intel
m First European Exascale machines are coming
= Jupiter at Julich (Germany) => Nvidia & Rhea
» Alice Recoque at CEA[TGCC (call still open)
» Need to re-develop applications with Performance portability
s GPU programming models: software catalysts
m France and Europe: great research but no production tool
= A need for a long-term sustainable solution
u to our hardware and software specificities
» Where we can have in the roadmap

100 % -|
90 % -
80 % -

50 % |
40 % |
30 % -
20 % -
10 % |

0%

Classical

Accelerated

" 2004 2009 2014 2019 2024

Computing power of the 500 top
supercomputers from june 2004 to june 2024
(source Top500)

Today HPC is
everyone’s

computing of
tomorrow

Personal
computer

Regional
computer

CEXA project: goals

Application demonstrators

application
demonstrators

kos

o
LK

ROC Grer. OpenMP

HPC ecosystem

How to write code for GPU? >

e Low-level, assembly-style programming models
o Nearly manipulate the actual instructions the device understands
o E.g.HSA, Level Zero, PTX, Spir-V, ..

e General-purpose, imperative GPU programming models
o Manipulate parallel loops, reductions, data transfer to & from
device
o E.g.Cudaq, HIP, Kokkos, OpenACC, OpenMP (target), Raja, SYCL

e Combination & assembly of existing GPU kernels
o Pytorch, StarPU, etc..

e Application framework for specific mesh types, numerical schemes
o Use domain-specific concepts on GPU

e Pre-written GPU libraries
o just call them from CPU
o Neural Networks, Linear Algebraq, ...

How to write code for GPU? >

e Low-level, assembly-style programming models
o Nearly manipulate the actual instructions the device understands
o E.g.HSA, Level Zero, PTX, Spir-V, ..

General-purpose, imperative GPU programming models

o Manipulate parallel loops, reductions, data transfer to & from
device

o E.g.Cudaq, HIP, Kokkos, OpenACC, OpenMP (target), Raja, SYCL

Combination & assembly of existing GPU kernels
o Pytorch, StarPU, etc..

e Application framework for specific mesh types, numerical schemes
o Use domain-specific concepts on GPU

e Pre-written GPU libraries
o just call them from CPU
o Neural Networks, Linear Algebraq, ...

How to write code for GPU? >

e Low-level, assembly-style programming models
o Nearly manipulate the actual instructions the device understands
o E.g.HSA, Level Zero, PTX, Spir-V, ..

General-purpose, imperative GPU programming models
o Manipulate parallel loops, reductions, data transfer to & from
device
o E.g.Cuda, HIP, Kokkos, OpenACC, OpenMP (target), Raja, SYCL

Combination & assembly of existing GPU kernels
o Pytorch, StarPU, etc..

e Application framework for specific mesh types, numerical schemes
o Use domain-specific concepts on GPU

e Pre-written GPU libraries
o just call them from CPU
o Neural Networks, Linear Algebraq, ...

Available solutions

Cuda
HIP
Kokkos
OpenACC
OpenMP (target)
Raja
SYCL
o OneAPI/DPC++
o AdaptiveC++/OpenSYCL/hipSYCL

Available solutions

Cuda e Production grade, with public support
HIP
Kokkos
OpenACC
OpenMP (target)
Raja
SYCL
o OneAPI/DPC++
o AdaptiveC++[OpenSYCL/hipSYCL

Available solutions

Cuda

HIP

Kokkos
OpenACC
OpenMP (target)

SYCL
o OneAPI/DPC++

Production grade, with public support

Vendor neutral

Available solutions

e Kokkos

e OpenMP (target)

Production grade, with public support

Vendor neutral

10

, KOKKOS_LAMBDA(int j) {

Kokkos

Execute in parallel, on a separate GPU thread each,
the same workload [. . .]
identified by a unique identifier

@ Nj times between 8 and Nj-1 "

OpenMP & Kokkos : memory transfer

double* y = malloc(Nj*sizeof(double)); View<double*, Kokkos::HostSpace> y(Nj);

{

auto dy = create_mirror_view(dev, vy);
(", KOKKOS_LAMBDA(int j) {

map(from: y[@:Nj]) for (int 1 =0 ; i < Ni ; ++1i) {

1§
dy(j) += dx(i) * A(j,1);
¥
J
(int j =0 ;] ;1) A 1}
for (int 1 ;1< Nij; o++1) | deep_copy(y, dy);
x[1] * A[j*Ni+i]; }
\
J

Kokkos
Copy x to GPU from device before kernel

Keep A on the device

12

o o
Compilation
OpenMP Target Kokkos
e Use an OpenMP compiler e AC++template library
o Compatible with the target o No direct code generation, rely on
construct vendors C++-like languages

o Compatible with the hardwareyou ¢ Multiple “backends”, selection at
compile time

target
d _ _ o Each vendor’s preferred toolchain

. (E:g%‘p\iflz?dor provides its own OpenMP o OpenMP, Cuda, OneAPI, HIP, ..

o Usually based on LLVM infra e Maximum 3 backends enabled at

once
o Default Clang/LLVM & GCC also try to o Serial backend
support this o 1Host pargllel backend
o For some hardware openmp

o 1Device parallel backend (cudaq,

o With variable performance HIP, Sycl)

13

Available solutions

e Kokkos

e OpenMP (target)

Production grade, with public support
Vendor neutral

14

Available solutions

e Kokkos

e OpenMP (target)

Production grade, with public support
Vendor neutral
Annotations

O

O

Works best with imperative
languages: C, Fortran, ...
Compiler integration: potential
for additional optimizations
Seq. first, requires to re-design
applications for GPU

Library

O

Suited to language with deep
encapsulation: C++, ...

On top of vendor toolchains:
edsier to port to new hardware
GPU first, requires to re-write
applications for GPU

15

Avg. Runtime (s)

And what about performance?

XSBench Average Runtime (s)

3
6 -
o e M Native Port
=3 [E Kokkos
4 SERH [S RAJA
ENH [E= OMP
5 g] 2 71 OACC
A Hl s.x @ BB svc
RE 3 H 3%‘?’“’.5@
Summit Perlmutter = Corona Frontier

Avg. Runtime (s)

su3_bench Average Runtime (s)

o~
o
8
l -
3
j 3 o
s
o
2.ha = N &
4 = J
i RE 3 Ne[J
SO e B
Reoo =
2382 g
S-Ooo f AN
Lo N = N SN
Perlmutter Corona Frontier

Native Port

4 Kokkos
1 RAJA

OMP
OACC
SYCL

Average runtime of the XSBench (left) and su3_bench (right) proxy apps across all platforms and
programming models.

Lower is better.

An Evaluative Comparison of Performance Portability across GPU Programming Models

Joshua H. Davis? Pranav Sivaraman?, Isaac Minn?, Konstantinos Parasyris', Harshitha Menon!, Giorgis Georgakoudis', Abhinav Bhatele?

2Department of Computer Science, University of Maryland

ICenter for Applied Scientific Computing, Lawrence Livermore National Laboratory

16

Kokkos at the center of a virtuous cycle

Good product

—> Selection by users

Projects funded <4 < More feedback

Sustained funding B >m

—> Trust in sustainability
{3 Funding supported by users

More development > ' '

There is strength in numbers:

collaboration on core products is good for everyone

© Christian Trott & Damien Lebrun Grandié, 2023

17

Kokkos, a HPSF project —_— |-|p5|: %
—

SOFTWARE FOUNDATION

4l Qj#

Performance Portability Productivity

A neutral hub for open source, high performance software
2. Supports projects that advance portable software for diverse hardware by:
o Increasing adoption
o Aiding community growth
o Enabling development efforts

3. Lower barriers to productive use of today’s and future high performance
computing systems

18

s HPSF

HIGH PERFORMANCE

Fund & vote

Premier —

Enterprise

aws = Sandia |[M Lawrence Livermore <4
S HewtettPackard National s L% National Laboratory ha kokkos

Governing board

Participate & vote General
@ WGs & committees

Technical Advisory Council

ﬁoin & vote

Projects
@ Spack @ AMReX
(& APPTAINER % @
TRILINOS
Open@HAMI)\ ORES

o

Outreach

<~)

Cl &
Testing

A ——
)

Tools

(GHAEL

~—

HPCToolkit

Ckokkos

FIPX

Diversity
| S ——
N

Events
—
)

Members

Sandia
National
Laboratories

. Lawrence

Livermore
National
Laboratory

AMD1 Argonne® Arm

NATIONAL LABORATORY

) ar S
@ intel kitware &

OAK om
RIDGE ﬁ R-CCS

Hewlett Packard
Enterprise

aws

» Los Alamos

AAAAAAAAAAAAAAAA

National Laboratory

Associate

S R N der Bundeswehr
,,@'; O GrEGON “# UTokyo Universitdt (Miinchen

19

The TAC has established a projectlifecycleasa ‘v
path to sustainability

Emerging Established Core
) * Used commonly in production
« Committed to open governance * Wide usage by at least 3 environments
. ' orgs of sufficient size and Steady commits from more than one

« Working towards best practices scope organization

. . » Large, well-established project
* Important projects for the HPC « Steady commits from at least communities

eCOSyStem one Organization » Sustainable cycle of development and

maintenance
* Robust development

=] PS F practices

HIGH PERFORMANCE 20
SOFTWARE FOUNDATION

Neutrality through HPSF —_— HPSF%%

HIGH PERFORMANCE

1. Sustaining OSS projects requires a community
2. Building a community requires trust
o Projects will continue to be available
o Projects are usable by anyone
o No one organization can control the direction of the project
o Projects are open to new contributors and new ideas
3. Trust gets us users; some users become contributors
4. Neutral, open governance ensures that we can build the broadest possible

communities

2]

The CEXA project

Py
“adopt and adapt” strategy based on s Kokkos

Kokkos : a strong technical basis ”
e A software architecture ready for the future
e Mature, free, libre, and open-source L
e Anindependent foundation to own the product E=mmm HPSF
- - —]
o HPSF under the Linux Foundation T LS o

e A standardisation effort in ISO C++
o A stepping stone one step ahead toward parallel C++
Some adaptations required
e For European hardware
o There is no real hardware sovereignty without software sovereignty
e For applications from CEA, France and Europe
o Take our specificities into account

22

CEXxA projectin practice

Extended team
Demonstrator developers

s Coreteam

= Management, implementation and
dissemination

m 12 researchers from all over CEA
m 6 dedicated recrutements
= 1 as a permanent researcher !
m Funding for 2 or 3 hires expected every year
= Extended team
s Demonstrator developers
= Not funded
m Find their own interest in the participation
m 2-3 new demonstrators every year
= Community
m Federation of an expert network
m Co-design of CExA:
» Identification of needs
m Usage of CEXA in applications
m Priority target for dissemination
» Sustainability of the work

23

Kokkos development today

Primary teams

OAK Sandia .
RIDGE National Oak Ridge

Lahoratories

National Laboratory

Contributions & support

A S e Number of commits by institution
rgonne.w= BERKELEY LAB ($28 CSCS e Inthe last 6 month
AN

o/Lc:)%Alamos TEXAS

NATIONAL LABORATORY TSity of of Tex

s

Kokkos parallel patterns

, KOKKOS_LAMBDA(int j) {

= :

Kokkos parallel patterns

, KOKKOS_LAMBDA(int j) { e For
o independent iterations

e Reduce
(, KOKKOS_LAMBDA(int j, double& accumulator) { o Accumulate into a single
ébcuhﬁigtor = /* [] */ value
}, result); o Scan
o N independent prefix
, KOKKOS_LAMBDA(int j, double& result, bool isfinal) reduction

/[]
accumulator += /*
if(is_final) {

'/ [..]

}

}, result);

26

Kokkos parallel patterns: easy debug

, KOKKOS_LAMBDA(int j) {

e Naming loops ease debugging & profiling
e Integrated with kokkos-specific tools

e Get atrace with names includes

e Getaname in debug messages

e Omitted in the presentation, but a good practice overall

= :

<ExecutionSpace>(, KOKKOS_LAMBDA(int j) {
/[]

e ExecutionSpace defines where to run

o Cuda, HIP, SYCL, HPX, OpenMP, OpenMPTarget, Threads, Serial
o 3 exec spaces per execution max: Serial + parallel Host + parallel Device

Choose where to run at compile time with a #define
o Usually set from CMake

2 predefined aliases are often enough

o DefaultExecutionSpace: parallel Device, or parallel Host, or Serial
m Most of the time

o DefaultHostExecutionSpace: parallel Host, or Serial
m When using host-only code

= :

Kokkos parallel patterns: Policies

(DefaultExecutionSpace(),), KOKKOS_LAMBDA(int j) {

Beyond simple 1D execution

e Give an instance of ExecutionSpace for multi-GPU or multi-Stream support

e RangePolicy for 1D iteration
o Begin [end iteration boundaries
o Chunk_size hint for improved performance

e MDRange policy for multi-dimensional iterations
o Multi-D begin [end iteration boundaries
o Tiling hint hint for improved performance

= .

Kokkos parallel patterns: hierarchical
parallelism

), KOKKOS_LAMBDA(const team_handle& team) {

(team,), KOKKOS_LAMBDA(int i) {

o Default loops can not be nested

e 2-level nesting is supported by teams of threads
o Matches groups / threads support in GPU
o But also available on CPU
o Intermediate (scratch) memory allocation available

= 30

, KOKKOS_LAMBDA(int j) {

, KOKKOS_LAMBDA(int j) {

e Asynchronous execution
e Result visibility is only assured after a fence

e Or between kernels running on the same execution space

= .

Kokkos views: multi-dimensional arrays

int** MemorySpace> my_matrix("matrix", Nx, Ny)

e Multi-dimensional arrays
o Type & dimensionality specified: int** => 2D integer array
o Dynamic sizes are parameters: Nx, Ny
o Static sizes are also possible: int*[4] => 2D array, 4 x dynamic

e Behaves like a C++ shared_ptr
o Shared ownership with reference counting (like in python)

e With a name for debugging/profiling

e MemorySpace is part of the type, defaults should be used

o CudaSpace, CudaHostPinnedSpace, CudaUVMSpace, HIPSpace, HIPHostPinnedSpace,
HIPManagedSpace, SYCLDeviceUSMSpace, SYCLHostUSMSpace, SYCLSharedUSMSpace,
HostSpace, SharedSpace, SharedHostPinnedSpace

o Check of accessibility between MemorySpace & ExecutionSpace

= 5

Kokkos views copies & co.

auto dview = (oview, (start, end), ALL, slice_idx);

e Make a new reference to a subset of an existing view

o Modifying the result modifies the source
o pair: select a subrange, ALL: keep the dimension, integer: slice the dimension

&exec_space, const &dest, const

e Copy data between 2 views
o Potentially on distinct memory spaces
o An asynchronous operation

(mspace, a_view); // allocates & copy a new view of same size

auto dview
(mspace, a_view); // allocates & copy if necessary

auto dview

o Allocates & copy to a new memory space

= .

Kokkos views layout

<double**, LayoutlLeft> A("A", M, N);

e Layout specifies the linearization of multi-D indices into memory
o LayoutLeft (a.k.a Fortran, default on GPU)
o LayoutRight (a.k.a C, default on Host)
o LayoutStride (generic, useful for subviews)

- N S
A
4 1 |
..--”/
I ——
[LI] ot
Layout left La i
e yout right
Colur?porrt?é%r)ln 2D M Raw major in 2D
. (C, C++, Python, Java)
Device default layout / / Host default layout
= it s
]

What's in Kokkos (core library)?

Multi-dimensional arrays
e Layout auto change for performance

Parallel patterns w. asynchronous support

e Independent interactions, Reductions, Scans
Iteration strategies

e Tiled, Hierarchical, ...

35

What's in Kokkos (core library)?

Multi-dimensional arrays

e Layout auto change for performance
Other containers

e Key-value maps, ScatterView ..

Automatic ref-counted Host/Device memory
allocation & management

Host/device memory transfers

Support of “dual” arrays with one version on
each side

e Up-to-date tracking & automatic
transfers when required

Scratch memory

e Using “team-local” fast memory on the
device

Parallel patterns w. asynchronous support

e Independent interactions, Reductions, Scans
Iteration strategies

e Tiled, Hierarchical, ...

Algorithms
e Sorting
e Random number generation
e Many of STL parallel algorithms
L

Qol features: portable printf, etc.
Portable atomic operations
SIMD

Coarse & fine-grain tasks

And much more...

36

What’'s new in Kokkos (core library)?

Multi-GPU support for CUDA, HIP, and SYCL

o Launch kernels on multiple devices from a single host process
Many Team-Level Algorithms

o Extended APl with a new overload for team-level support
Build systems update

o support linking against build tree & building with hidden visibility
New Kokkos:View implementation

o Now mdspan-based
Improved sorting performance
Updated SIMD support to align with C++26
Improved Thread-Safety

o Kernels can be submitted from multiple threads to the same execution space
Clarified support for View of Views

o Introduced a new SequentialHostInit view allocation property
Improved clang-tidy Conformity

37

Kokkos Ecosystem

[Kokkos-based applications }

N

Kokkos (core)

SYCL. Q

penMIP

38

Kokkos Ecosystem

Py
-

[Kokkos-based applications }

4)
Kokkos
kernel

Kokkos (core)

X Y

AMDI1

ROCm [EHs

svcL. OpenMP

39

Kokkos Ecosystem

[Kokkos-based applications }

Kokkos fft 'églr(ﬁ?ﬁ \
Kokkos | \ L]
kernel | (L, g
Kokkos
| Resilience | | pyKokkos |
N
.
[Kokkos (core)
) J
AMDQ1
ROCm SYCL. QpenMP

ECPU

40

Kokkos Ecosystem

Py
-

-

Kokkos tools

)

[Kokkos-based applications }

Debugging
Profiling \
Kokkos fft 'églr(ﬁ?ﬁ
- _) Kokkos | \])
; Tuning) kernel | (oo) (g
| Resilience | | pyKokkos |
(. ‘ ~ v
Linting i
. - [Kokkos (core)
~ Y,
AMDZ1
ROCm svcL. OpenMP

ECPU

41

Kokkos Ecosystem

-

-

Kokkos tools

)

[Kokkos-based applications }

(-

Kokkos support

)

Vs

Documentation

~

Debugging L)
& J
s ~N Tutorials
Profiling b g
b g | f) [Kokkos | ()
Kokkos fft Trainings
() KOkkOS A J U comm Y, \ J
Tuning
S g kernel | [Kokkos | rpyKokkos\ [Online Support)
) . g \Resnlence) L) L)
Linting N 1 Hackat)
: ’ Kokkos (core Uiiastchlly
> | oe)))
AMD:' >4 NVIDIA.
ROCM sycL. OpenMP

ECPU

42

Kokkos Ecosystem
(\\ [Kokkos-based applications } (/ \\
Kokkos tools Kokkos support
(.) Documentation
Debugging [DDC][ArborX] L J
p S [Trilinos :][PETSC] [Tutorials \
Profiling b g
Kokkos fft Iéglr(:i?s Trainings
(runi) Kokkos | \)\ J > g
uning kernel | (Y (N | \
\ J Kokkos :
| Resilience | \pyKokkos) L Online Support)
f o 1\
Linting [! f Hackatons)
‘ / Kokkos (core) e)
- ?) N\

AMDI1

ROCM sycL. OpenMP

ECPU 43

To conclude

Kokkos is a strong vendor-neutral, performance
portable Exascale programming model with GPU
support

A worldwide collaborative effort for an application
first strategy

CEXA & HPSF ensure it is a sovereign and

sustainable approach that can be relied on for the
foreseeable future

A strong dynamic all over the CEA and beyond

44

