Kokkos at CEA
the CEXA Project

The reasons of a choice at the CEA

= ‘ .

—mm HPSF Computing at

m Z(I)GF'ivziiFEOFRoMUANNDiET\ON ‘; ’ Exa scqle with

SPU J Accelerators
usage da

CERFACSg)4 ‘ at the CEA

January 23 2025 :

Julien Bigot, the CExA & Kokkos team

Context (2 years ago)

m CEA: French Atomic Energy Commissary (“French DoE”)

m Around 20k researchers, 9 research centers all over France
» Organized in 4 largely independent divisions: DAM, DES, DRF & DRT s«

n is a tool largely used all over CEA

We just entered the Exascale erg, that means GPU

= US Exascale: & , EU pre-Exascale: &

= 2 Exascale machines planned in EU for 2025
» Jupiter machine in Germany, at Julich => +
= Jules Vernes machine in France, at CEA/TGCC (

100 %
90 %
80 %
70 %
60 %

40 %
30 %
20 %
10 %

0%
2004

Classical

Accelerated

2009 2014 2019 2024

Computing power of the 500 top
supercomputers from june 2004 to june 2024
(Rheo) (source Top500)

call)

m Need to re-develop applications with Performance portability

GPU middleware: software catalysts

m France and Europe: great research but no production tool

m App developers are sitting on Buridan's ass
= A need for a long-term sustainable solution
m Adapted to our hardware and software specificities
@ m Trustinthe roadmap

Local

Regional _
computer Workstation
Today HPC is
everyone’s
Top HPC computing of
tomorrow 2

CEXA project: goals

Application demonstrators
DAM

application
demonstrators

HPC ecosystem

GPU programming, a vast choice of approaches

e Low-level, assembly-style programming models
o Nearly manipulate the actual instructions the device understands
o E.g.HSA, Level Zero, PTX, Spir-V, ..

e General-purpose, imperative GPU programming models
o Manipulate parallel loops, reductions, data transfer to & from
device
o E.g.Cudaq, HIP, Kokkos, OpenACC, OpenMP (target), Raja, SYCL

e Combination & assembly of existing GPU kernels
o Pytorch, StarPU, etc..

e Application framework for specific mesh types, numerical schemes
o Use domain-specific concepts on GPU

e Pre-written GPU libraries
o just call them from CPU
o Neural Networks, Linear Algebraq, ...

GPU programming, a vast choice of approaches

e Low-level, assembly-style programming models
o Nearly manipulate the actual instructions the device understands
o E.g.HSA, Level Zero, PTX, Spir-V, ..

General-purpose, imperative GPU programming models

o Manipulate parallel loops, reductions, data transfer to & from
device

o E.g.Cudaq, HIP, Kokkos, OpenACC, OpenMP (target), Raja, SYCL

Combination & assembly of existing GPU kernels
o Pytorch, StarPU, etc..

e Application framework for specific mesh types, numerical schemes
o Use domain-specific concepts on GPU

e Pre-written GPU libraries
o just call them from CPU
o Neural Networks, Linear Algebraq, ...

Imperative GPU programming, a vast choice of
approaches

Cuda

HIP

Kokkos
OpenACC
OpenMP (target)
Raja

SYCL

o OneAPI/DPC++
o AdaptiveC++/OpenSYCL/hipSYCL

Imperative GPU programming, a vast choice of
approaches

Cuda e Production grade, with public support
HIP

Kokkos

OpenACC

OpenMP (target)

Raja

SYCL

o OneAPI/DPC++
o AdaptiveC++ (was OpenSYCL/hipSYCL)

Imperative GPU programming, a vast choice of
approaches

Cuda e Production grade, with public support
HIP e Vendor neutral

Kokkos

OpenACC

OpenMP (target)

Raja

SYCL

o OneAPI/DPC++
o AdaptiveC++/OpenSYCL/hipSYCL

Imperative GPU programming, a vast choice of
approaches

Cuda e Production grade, with public support
HIP e Vendor neutral

Kokkos

OpenACC

OpenMP (target)

Raja

SYCL

o OneAPI/DPC++
o AdaptiveC++/OpenSYCL/hipSYCL

OpenMP & Kokkos : the simplest GPU loop

, KOKKOS_LAMBDA(int j) {

OpenMP Target Kokkos

Execute in parallel, on a separate GPU thread each,
the same workload [. . .]
identified by a unique identifier
@ Nj times between 6 and Nj-1

10

OpenMP & Kokkos : memory transfer

double* y = malloc(Nj*sizeof(double)); View<double*, Kokkos::HostSpace> y(Nj);

{

auto dy = create_mirror_view(dev, vy);
(', KOKKOS_LAMBDA(int j) {
map(from: y[@:Nj]) for (int i =0 ; i < Ni ; ++i) {
dy(j) += dx(i) * A(j,1);
1
J
(int j =0 ; j ;3 A 1)
for (int i ;1 < Ni; ++1) deep_copy(y, dy);
x[1] * A[j*Ni+i]; }
1
J

OpenMP Target Kokkos
Copy x to GPU from device before kernel

Keep A on the device

n

And what about performance?

Smilei code
e Particle per peak FLOP
e OnAIOO
e Strong scaling
e Higher is better

Ester El Khoury, Mathieu
Lobet, Kevin Peyen,
Juan-Jose Silva Cuevas

Maison de la Simulation

Particles per theoretical peak FLOP

Particles per theoretical peak FLOP: prog. models on A100

416 832
| |

Memory footprint (MiB)
1664 3328 13312 26624
1 1 1]]

=

9
IS
|

1075

- —e— Kokkos —e— Sycl —a— OpenACC —- Stdpar
o« —eo— Thrust
I I I | T | I
16 32 64 128 256 512

Number of particles per cell

12

Imperative GPU programming, a vast choice of
approaches

Cuda

HIP

Kokkos
OpenACC
OpenMP (target)
Raja

SYCL

o OneAPI/DPC++
o AdaptiveC++/OpenSYCL/hipSYCL

13

Imperative GPU programming, a vast choice of
approaches

Cuda e Production grade, with public support
HIP e Vendor neutral

Kokkos

OpenACC

OpenMP (target)

Raja

SYCL

o OneAPI/DPC++
o AdaptiveC++/OpenSYCL/hipSYCL

14

Imperative GPU programming, a vast choice of
approaches

Cuda

HIP
Kokkos
OpenACC

Raja
SYCL
o OneAPI/DPC++
o AdaptiveC++/OpenSYCL/hipSYCL

e Production grade, with public support
e Vendor neutral

O

Works best with imperative languages:
C, Fortran, ..

Requires to re-design applications for
GPU

Compiler integration: potential for
additional optimizations

e Library

O

Suited to language with deep
encapsulation: C++

Requires to re-design applications for
GPU

On top of vendor backends: easier to
port to new hardware

15

Kokkos paraliel patterns

, KOKKOS_LAMBDA(int j) {

16

Kokkos paraliel patterns

(, KOKKOS_LAMBDA(int j) { e For
: o independent iterations

e Reduce

(, KOKKOS_LAMBDA(int j, double& accumulator) { o Aclcumulote into a single
/)] value

accumulator += /% T
}, result); e Scan
o N independent prefix
reduction

KOKKOS_LAMBDA(int j, double& result, bool isfinal)

/[]
accumulator += /*
if(is_final) {

'/ [..]

}

}, result);

Kokkos parallel patterns: easy debug

, KOKKOS_LAMBDA(int j) {

e Naming loops ease debugging & profiling
e Integrated with kokkos-specific tools

e Get atrace with names includes

e Getaname in debug messages

e Omitted in the presentation, but a good practice overall

18

Kokkos parallel patterns: Policies

), KOKKOS_LAMBDA(int j)

Beyond simple 1D execution

e RangePolicy for 1D iteration
o Begin [end iteration boundaries
o Chunk_size hint for improved performance

e MDRange policy for multi-dimensional iterations
o Multi-D begin [end iteration boundaries
o Tiling hint hint for improved performance

19

Kokkos parallel patterns: ExecutionSpace

(DefaultExecutionSpace(),), KOKKOS_LAMBDA(int j) {

e ExecutionSpace defines where to run

o Cuda, HIP, SYCL, HPX, OpenMP, OpenMPTarget, Threads, Serial
o 3 exec spaces per execution max: Serial + parallel Host + parallel Device

e Choose where to run at compile time with a #define
o Usually set from CMake

e 2 predefined aliases are often enough
o DefaultExecutionSpace: parallel Device, or parallel Host, or Serial
m Most of the time, this is the default
o DefaultHostExecutionSpace: parallel Host, or Serial
m When using host-only code

20

Kokkos parallel patterns: hierarchical parallelism

), KOKKOS_LAMBDA(const team_handle& team) {

(team,), KOKKOS_LAMBDA(int i) {

e Default loops can not be nested

e 2-level nesting is supported by teams of threads
o Matches groups / threads support in GPU
o But also available on CPU
o Intermediate (scratch) memory allocation available

21

Kokkos parallel patterns are asynchronous

, KOKKOS_LAMBDA(int j) {

, KOKKOS_LAMBDA(int j) {

e Asynchronous execution
e Result visibility is only assured after a fence

e Or between kernels running on the same execution space

22

Kokkos views: multi-dimensional arrays

int** MemorySpace> my_matrix("matrix", Nx, Ny)

e Multi-dimensional arrays
o Type & dimensionality specified: int** => 2D integer array
o Dynamic sizes are parameters: Nx, Ny
o Static sizes are also possible: int*[4] => 2D array, 4 x dynamic

e Behaves like a C++ shared_ptr
o Shared ownership with reference counting (like in python)

e With a name for debugging/profiling

e MemorySpace is part of the type, defaults should be used

o CudaSpace, CudaHostPinnedSpace, CudaUVMSpace, HIPSpace, HIPHostPinnedSpace,
HIPManagedSpace, SYCLDeviceUSMSpace, SYCLHostUSMSpace, SYCLSharedUSMSpace,
HostSpace, SharedSpace, SharedHostPinnedSpace

o Check of accessibility between MemorySpace & ExecutionSpace

23

Kokkos views copies & co.

auto dview = (oview, (start, end), ALL, slice_idx);

e Make a new reference to a subset of an existing view

o Modifying the result modifies the source
o pair: select a subrange, ALL: keep the dimension, integer: slice the dimension

&exec_space, const &dest, const

e Copy data between 2 views
o Potentially on distinct memory spaces
o An asynchronous operation

auto dview (mspace, a_view); // allocates & copy a new view of same size

auto dview (mspace, a_view); // allocates & copy if necessary

o Allocates & copy to a new memory space

24

Kokkos views layout

<double**, LayoutlLeft> A("A", M, N);

e Layout specifies the linearization of multi-D indices into memory
o LayoutLeft (a.k.a Fortran, default on GPU)
o LayoutRight (a.k.a C, default on Host)
o LayoutStride (generic, useful for subviews)

- N S
A
4 1 |
..--”/
I ——
[LI] ot
Layout left La i
e yout right
Colur?porrt?é%r)ln 2D M Raw major in 2D
. (C, C++, Python, Java)
Device default layout / / Host default layout
oz |
]

What's in Kokkos (core library)?

Multi-dimensional arrays
e Layout auto change for performance

Parallel patterns w. asynchronous support

e Independent interactions, Reductions, Scans
Iteration strategies

e Tiled, Hierarchical, ...

26

What's in Kokkos (core library)?

Multi-dimensional arrays

e Layout auto change for performance
Other containers

e Key-value maps, ScatterView ..

Automatic ref-counted Host/Device memory
allocation & management

Host/device memory transfers

Support of “dual” arrays with one version on
each side

e Up-to-date tracking & automaitic transfers
when required

Scratch memory

e Using “team-local” fast memory on the
device

Parallel patterns w. asynchronous support

e Independent interactions, Reductions, Scans
Iteration strategies

e Tiled, Hierarchical, ...
Algorithms

e Sorting

e Random number generation

e Many of STL parallel algorithms
L4

Qol features: portable printf, etc.
Portable atomic operations
SIMD

Coarse & fine-grain tasks

And much more...

27

Kokkos Ecosystem

[Kokkos-based applications }

N

[Kokkos (core)

AMDI1

ROCm [EHs

svcL. OpenMP

Kokkos Ecosystem

-

[Kokkos-based applications }

4)
Kokkos
kernel

Kokkos (core)

X Y

AMDI1

ROCm [EHs

svcL. OpenMP

29

Kokkos Ecosystem

[Kokkos-based applications }

Kokkos fft 'églr(ﬁ?ﬁ \
Kokkos | \ L]
kernel | (L, g
Kokkos
| Resilience | | pyKokkos |
N
.
[Kokkos (core)
) J
AMDQ1
ROCm SYCL. QpenMP

ECPU

30

Kokkos Ecosystem

Py
-

-

Kokkos tools

)

[Kokkos-based applications }

Debugging
Profiling \
Kokkos fft 'églr(ﬁ?ﬁ
- _) Kokkos | \])
; Tuning) kernel | (oo) (g
| Resilience | | pyKokkos |
(. ‘ ~ v
Linting i
. - [Kokkos (core)
~ Y,
AMDZ1
ROCm svcL. OpenMP

ECPU

31

Kokkos Ecosystem

(\\ [Kokkos-based applications } (/ \\
Kokkos tools Kokkos support
” (Debugging) Documentation
: p < Tutorials
Profiling h g
) ’] () [Kokkos | ()
Kokkos fft Trainings
() Kokkos |) Leemm gt ’
Tuning k e N\ [N
‘ ernel 0 \
\ J Kokkos ;
pyKokkos Online Support
) . iy _ Fortran |) L)
Linting ~ 4 Hackat)
O “) [Kokkos (core))
o) = Y,

ROCm svc. OpenMP

ECPUE 32

Kokkos Ecosystem, beyond just the Kokkos project

Py
-

-

)

[Kokkos-based applications }

(-

rt\\

Kokkos tools Kokkos suppo
(.) Documentation
Debugging [DDC] [ArborX]
Profiling
) ’] () [Kokkos |
Kokkos fft Trainings
() Kokkos | \) Lcomm J
Tuning kernel | (Y (N | \
\ J Kokkos :
Online S t
| Resilience | \pyKokkos) e sieeer
Hning [b [Hackatons \
\ / Kokkos (core) e)
\K / J K /j
AMDQ1
ROCM sycL. OpenMP

33

Kokkos at the center of a virtuous cycle

Good product

—> Selection by users

Projects funded <4 < More feedback

Sustained funding B >m

—> Trust in sustainability
{3 Funding supported by users

More development > ' '

There is strength in numbers:

collaboration on core products is good for everyone

@ © Christian Trott & Damien Lebrun Grandie

34

Kokkos an anteroom for standard C++

ISO C++ is standardizing base tools for

e Parallel programming is entering the ISO C++ language
o Parallel algorithms, sender?receivers, etc.

e The Kokkos team spearheads the standardization of many

Multi-D arrays (std: :mdspan)

Vectorization (std: :simd)

Linear algebra (std: :1inalg)

And much more to come (mixed precision, etc.)

o

o O O

Kokkos offers a stable API today for the features of the C++ of tomorrow

e Standardization is slow (9 years for mdspan)
o Consensus with all communities

e Kokkos offers the features today
o And keeps maintaining a on top of standardized SO C++
o With added interoperability layers (Cf. kokkos: :view [std: :mdspan)
o Andin a GPU-compatible implementation (Cf. kokkos : :array)

35

s HPSF

HIGH PERFORMANCE

Here comes HPSF

all <:::{>

Performance Portability Productivity

1. A neutral hub for open source, high performance software.

2. HPSF supports projects that advance portable software for diverse hardware by:
m Increasing adoption
m Aiding community growth
m Enabling development efforts

3. Lowering barriers to productive use of today’s and future high performance
computing systems.

Under the Linux Foundation

= s

s HPSF

HIGH PERFORMANCE

Fund & vote

Enterprise

aws = Sandia |[M Lawrence Livermore <4
S HewtettPackard et s L% National Laboratory ha kokkos

Governing board

Participate & vot@ \

/ WGs
Technical Advisory Council Outreach| | Diversity
ﬁ T Clt& Events
Join & vote _'esting))
Projects Tools

.

Viskores By hygroro

@ spack [1o FAMReX
. Charliecloud

Bl Zkokkos (A)APPTAINER EIS

Members

Premier

—
aWS Hewlett Packard

Enterprise

M Lawrence Livermore r-l,‘ Sandia

National Laboratory [‘;}':,2?(',,.%

General

AMDZU intel <EnviDIA

Argonne & ¥%OAKRIDGE %@y Los Alamos

National Laboratory NATIONAL LABORATORY

& kitware E

Associate

NIVERSITY O

&r O/ orEGON B MARVTAND
IJ JULICH

Forschungszentrum

37

HPSF Software life-cycle

e Core projects have a reliable & sustainable development process
o The developer base is strong and diverse
o The are multiple
o The governance is well specified
m No single institution has a majority in the project lead
o The project also fulfils all Established requirements

Py o Established projects are open to new developers with a wide base of users
o The user base is wide and diverse
B Established o The is well documented and newcomers-friendly
L o The development is strong and steady
o The project also fulfils all Sandbox requirements

/ Sandbox \

e Sandbox projects are free, open, neutral, and aim for the above
o Are free, libre, open-source HPC-related LF projects

o Witha
o And an aim to widen developer and user-base beyond a single
institution

= .

Two (independant) ways to participate

e Joining as a member (for institutions)
o You need to join the Linux Foundation (Non-profit/academic, as associate for $0)
o Joining HPSF at one of three levels:
s Premier: $175k /[year
s General: $2.5k - $50k [year depending on size of organization
= Associate: $0 for non-profit / academic
o , fund it & get a say on where the funding goes to

« Joining as a project (for software project)

For the High Performance Computing ecosystem

That need a to facilitate multi-institutional collaborations

Providing vendor neutral solutions to engineering and science computational needs
Committed to building an open developer and user community

O

o O O

= »

With CExA, CEA goes for Kokkos!

Py
“adopt and adapt” strategy based on w Kokkos

= Kokkos: a strong technical basis o/
m A software architecture ready for the future ha
= Mature, freeg, libre, and open-source
= An independent foundation to own the product E==mm HPSF

s HPSF under the Linux Foundation %
s A standardisation effortin ISO C++
= A stepping stone one step ahead toward HPC C++ ISO 'O“:ZZ‘:"I;ET’I‘;'] .
= Some adaptations required N2l | standardization

m For European hardware

m There is no real hardware sovereignty without software sovereignty
m For applications from CEA, France and Europe

m Take our specificities into account

= .

CEXxA projectin practice

m Core team

m Management, implementation and
dissemination

Extended team

Demonstrator devalopers Fully integrated in the Kokkos team

|
m I3 researchers from all over CEA
m 3 recrutements done, 5 more funded
m Funding for 3 more hires expected next year
m Extended team
m Demonstrator developers
m Not funded
m Find their own interest in the participation
m 2-3 new demonstrators every year
= Community
m Federation of an expert network
m Co-design of CExA:
m Identification of needs
m Usage of CEXA in applications
m Priority target for dissemination
m Sustainability of the work

41

CExA:what’'s going on?

Help with documentation
o Website, Cheat-sheets, ..

Trainings, lots of training!

Support our applications

o Test viability &
performance

o Add required solvers to Kokkos-kernels

Improve software quality
o Workon
o Co-maintaining Kokkos Spack recipes

Ease code migration
o From Fortran
o From C (with classes)
o From

Test hardware & improve kokkos for it
o Intel PVC backend improvement

o memory
management handling

Add our contributions to Kokkos
ecosystem

o DDC
m Discrete data & computation

m Performance portable FFT with a
Kokkos API

o Kokkos-comm

m Message passing integrated with
Kokkos

42

Kokkos training & community animation

Many Kokkos trainings

o

o

o

o

o

o

Kokkos virtual tea-time once a month

o

Latest News

September 2023 with C. Trott & D. Lebrun Grandié in Saclay
March 2025 Hackathon at IDRIS

September 2024 w. D. Lebrun Grandié & L. Berger-Vergiat
November 2024 Mission Numérique CEA in Grenoble
January 2025 CEA/Riken winter school in Barcelona
January 2025 Hackathon w. Intel

January 2025 ED 127 training

April 2025 Mission numérique in Cadarache

Summer school 2025 w. EDF & Inria

Informal presentations & discussions, in English
m about Kokkos, its ecosystem & GPU at large

43

https://anr.fr/fr/detail/call/pepr-numpex-appel-a-projets-numerique-pour-lexascale-2024/

What's next? ANR GPU call (NumPEX)

e Part of NumPEx call: 2"9 thematic axis

o 1.8 M€ total on GPU for 1 or 2 projects between 500k€ & 1.8M€ each
e 3 sub-axes

o Modern C++ programming models to generate GPU executables (Kernels)
m Guidelines for application development

s Compile-time memory safety checking

s Auto tuning, tooling & integration with dynamic kernel scheduling runtimes
o Exploration of programming models coming from other communities (Al, etc.) for
numerical simulation

o Tools & programming models extensions to help porting large code bases to GPU
e Evaluation criteria

o Collaboration with existing application demonstrators & pre-existing technical
choices & research in NumPEx

o Integration & usage of proposed tools & libraries in everyday production of large
French & European codes

o Roadmap for an integration in sustainable libraries (such as Kokkos) ensuring high
TRL, long-term support & vendor neutrality and independence

= :

https://anr.fr/fr/detail/call/pepr-numpex-appel-a-projets-numerique-pour-lexascale-2024/

To conclude

Kokkos is a strong vendor-neutral, performance
portable Exascale programming model with GPU
support

CEXA & HPSF ensure it is a sovereign and

sustainable approach that can be relied on for the
foreseeable future

A strong dynamic all over the CEA and beyond

A knock-on effect with new synergies identified
every weeks with code developers

45

The core team

Julien Bigot

Principal investigator

Yuuichi Asahi Rémi Baron

Senior developer Senior developer

Ansar Calloo
Senior developer

Thomas Padioleau
Senior developer

Cedric Chevalier
Senior developer

Paul Zehner

Developer

Mathieu Lobet Paul Gannay
Senior developer Developer

Hariprasad Kannan

Developer

46

The extended team

Pierre Ledac Virginie Grandgirard Frangois Letierce

Trust/TrioCFD lead GyselaX++ lead

-

Julien Jaeger Edouard Audit
TGCC link Network animator

Triclade lead

Samuel Kokh
DES link

Patrick Carribault
TGCC link

47

Join us & join the fun!

2-years HPC DevOps Engineer position 2-years C++ expert engineer position
Deployment and Cl on supercomputers for Contribution to the development of the
the C++ Kokkos library within the Kokkos GPU computing library within the
“Moonshot” CEXA project CExA “Moonshot” project

Join the CEA’s ambitious “Moonshot”
project, CExA, and contribute to the
development of the Kokkos GPU
computing library. We are recruiting six
talented and enthusiastic C++

CEA is recruiting DevOps engineers for a
2-year period to join the CExA “Moonshot”
project team, which is setting up CEA'’s
GPU computing software stack around the
Kokkos C++ library, to contribute to
innovative packaging, deployment and development engineers for a period of 2
continuous integration approaches for years to work at our CEA Saclay site
supercomputers, based in particular on near Paris.

Spack. A team of more than 10 people is

currently being set up. The positions will

be based at the CEA Saclay site near Paris.

https://cexa-project.org

= :

https://cexa-project.org

And what about performance?

An Evaluative Comparison of Performance Portability across GPU Programming Models

Joshua H. Davis?, Pranav Sivaraman?, Isaac Minn?, Konstantinos Parasyris!, Harshitha Menon', Giorgis Georgakoudis',
Abhinav Bhatele?

’Department of Computer Science, University of Maryland
'Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

XSBench Average Runtime (s) su3_bench Average Runtime (s)
3 g
6 = =
. e M Native Port __ 1.00 /| Native Port
% * §;§] 5 Kokkos T:’ / - EE Kokkos
€ 4 o g: B | RAJA £ 0.75+) 3 " RAJA
E : E : AN 'g j o E DANANN]
> N —] ; S —
= N5 H g (Y3 E— < (N g [O
%0 = 2 71 OACC %0] S| 5 N o /1 OACC
L 2 _o ENE = 4 & or N S[
grgloy NEls [EER sycL 025 |2 EE ¥ | NeLB E. sycL
ca—mT— (55 NN - N8c2% A Sc Kool = e
EER EEd EEH & ﬂ el ie B %E
o % :‘:-wI 4 : X N! v R = 1 Bt ! /| 0.00 § \, 4 & J_l,: | :\.:‘v “
Summit Perlmutter Corona Frontier Summit Perlmutter Corona Frontier

Figure 1: Average runtime of the XSBench (left) and su3_bench (right) proxy apps across all platforms and programming models. Lower is better.

49

And what about performance?

Smilei code
e Particle per peak FLOP
e OnMI250
e Strong scaling
e Higher is better

Ester El Khoury, Mathieu
Lobet, Kevin Peyen,
Juan-Jose Silva Cuevas

Maison de la Simulation

Particles per theoretical peak FLOP

Particles per theoretical peak FLOP: prog. models on AMD MI250

Memory footprint (MiB)
3328 6

416 832 1664 656 13312 26624

10—5_

—e— Kokkos

—— Sycl

—e— Thrust

I I
8 16 32 64

Number of particles per cell

I I I
128 256 512

50

What kind of software is in HPSF so far?

Build & Deploy Develop & Sustain Analyze & Tune
® Build your software with tools ¢ Le}/erage peE‘orrlnance-portable ® Profile your software with
: software technologies
that support all major _ ogles tools targeted at HPC
computing architectures ® Reuse high-quality scientific environment
. computing libraries including
® Deploy with cloud-ready programming models, solvers, ® Tune your software using
packaging and container and visualization information that connects
o S oty
evelopment for modeling an
largest exascale simulation applications you.r software leverages HPSF
supercomputers projects

-~
EIS (A/APPTAINER

VISkO res §\\.\HPCToolkit .

Charliecloud

= kokkosa

