
Disposition : Titre image

Kokkos, HPSF 
& CExA

P3HPC’24 Workshop
Atlanta
November 18th 2024
Julien Bigot, the CExA & Kokkos team 1

Or: How We Learned To Stop Worrying 
        And Love Productive, Performance-portable 
        GPU Programming

Computing at 
Exascale with 
Accelerators 
at the CEA



Come visit us 
at booth 4143

■ CEA: French Atomic Energy Commissary (“French DoE”)
■ Around 20k researchers, 9 research centers all over France
■ Organized in 4 divisions: military applications (DAM), energies (DES), 

fundamental research (DRF) & technological developments (DRT)
■ HPC is a tool largely used all over CEA

■ We just entered the Exascale era, that means GPU
■ US Exascale: AMD & Intel, EU pre-Exascale: AMD & Nvidia 
■ 2 Exascale machines planned in EU for 2025

■ Jupiter machine in Germany, at Jülich => Nvidia + SiPearl(Rhea)
■ Jules Vernes machine in France, at CEA/TGCC (open call)

■ Need to re-develop applications with Performance portability
■ GPU middleware: software catalysts

■ France and Europe: great research but no production tool
■ App developers are sitting on Buridan's ass

■ A need for a long-term sustainable solution
■ Adapted to our hardware and software specificities
■ Trust in the roadmap

Context (2 years ago)

10 years

10 years

Today HPC is 
everyone’s 
computing of 
tomorrow

Top HPC

Regional 
computer

Local
Workstation

2

Classical

Accelerated

2009 2014 2019 2024

> 75 %

Computing power of the 500 top 
supercomputers from june 2004 to june 2024 
(source Top500)

100 % -

90 % -

80 % -

70 % -

60 % -

50 % -

40 % -

30 % -

20 % -

10 % -

0 % -
2004



3

CExA project: goals

Provide a 
long-term 

sustainable 
software 

catalyst for GPU 
computing

Adapt
application 

demonstrators

Disseminate
and offer  

training at largeDRF DESDAM

Long-term sustainable GPU catalyst

Application demonstrators

HPC ecosystem

?



GPU programming, a vast choice of approaches
● Low-level, assembly-style programming models

○ Nearly manipulate the actual instructions the device understands
○ E.g. HSA, Level Zero, PTX, Spir-V , …

● General-purpose, imperative GPU programming models
○ Manipulate parallel loops, reductions, data transfer to & from 

device
○ E.g. Cuda, HIP, Kokkos, OpenACC, OpenMP (target), Raja, SYCL

● Combination & assembly of existing GPU kernels
○ Pytorch, StarPU, etc…

● Application framework for specific mesh types, numerical schemes
○ Use domain-specific concepts on GPU

● Pre-written GPU libraries
○ just call them from CPU
○ Neural Networks, Linear Algebra, …

G
eneralityEa

se
 o

f u
se

Performance

Performance 

portability

Domain 

abstractions

GPU 

transparency

4



● Cuda
● HIP
● Kokkos
● OpenACC
● OpenMP (target)
● Raja
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++/OpenSYCL/hipSYCL

Imperative GPU programming, a vast choice of 
approaches

5



● Cuda
● HIP
● Kokkos
● OpenACC
● OpenMP (target)
● Raja
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++ (was OpenSYCL/hipSYCL)

Imperative GPU programming, a vast choice of 
approaches

● Production grade, with public support

6



● Cuda
● HIP
● Kokkos
● OpenACC
● OpenMP (target)
● Raja
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++/OpenSYCL/hipSYCL

Imperative GPU programming, a vast choice of 
approaches

● Production grade, with public support
● Vendor neutral

7



● Cuda
● HIP
● Kokkos
● OpenACC
● OpenMP (target)
● Raja
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++/OpenSYCL/hipSYCL

Imperative GPU programming, a vast choice of 
approaches

● Production grade, with public support
● Vendor neutral

8



#pragma omp teams distribute parallel for
for (int j = 0 ; j < Nj ; ++j) {

// [...]
}

OpenMP & Kokkos : the simplest GPU loop

parallel_for(Nj, KOKKOS_LAMBDA(int j) {
// [...]

});

OpenMP Target Kokkos

Execute in parallel, on a separate GPU thread each,

the same workload [...]

identified by a unique identifier j

Nj times between 0 and Nj-1

for (int j = 0 ; j < Nj ; ++j) {
// [...]

}

Sequential

9



OpenMP & Kokkos : memory transfer

double* x = malloc(Ni*sizeof(double));
double* y = malloc(Nj*sizeof(double));
double* A = omp_target_alloc(

Ni*Nj*sizeof(double),
omp_get_initial_device());

#pragma omp target data \
map(to: x[0:Ni]) \
map(from: y[0:Nj])

{
#pragma omp teams distribute parallel for
for (int j = 0 ; j < Nj ; ++j) {

for (int i = 0 ; i < Ni ; ++i) {
y[j] += x[i] * A[j*Ni+i];

}
}

View<double*, Kokkos::HostSpace> x(Ni);
View<double*, Kokkos::HostSpace> y(Nj);
View<double*> A(Nj, Ni);

{
auto dx = create_mirror_view_and_copy(dev, x);
auto dy = create_mirror_view(dev, y);
parallel_for(Nj, KOKKOS_LAMBDA(int j) {

for (int i = 0 ; i < Ni ; ++i) {
dy(j) += dx(i) * A(j,i);

}
});
deep_copy(y, dy);
}

OpenMP Target Kokkos
Copy x to GPU from device before kernel

and y from GPU to device after kernel
Keep A on the device

10



Compilation

Kokkos

● A C++ template library
○ No direct code generation
○ rely on vendors C++-like languages

● Multiple “backends”
○ Selection at compile time
○ OpenMP, Cuda, OneAPI, HIP, …

● Maximum 3 backends enabled at once
○ Serial backend
○ 1 Host parallel backend (openmp)
○ 1 Device parallel backend (cuda, HIP, 

Sycl)

OpenMP Target

● Use an OpenMP compiler
○ Compatible with the target construct
○ Compatible with the hardware you 

target
● Each vendor provides its own OpenMP 

compiler
○ Usually based on LLVM infra

● Default Clang/LLVM & GCC also try to 
support this

○ For some hardware

11



● Cuda
● HIP
● Kokkos
● OpenACC
● OpenMP (target)
● Raja
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++/OpenSYCL/hipSYCL

Imperative GPU programming, a vast choice of 
approaches

12

● Production grade, with public support
● Vendor neutral
● Annotations

○ Works best with imperative languages: 
C, Fortran, …

○ Requires to re-design applications for 
GPU

○ Compiler integration: potential for 
additional optimizations

● Library
○ Suited to language with deep 

encapsulation: C++
○ Requires to re-design applications for 

GPU
○ On top of vendor backends: easier to 

port to new hardware



Kokkos parallel patterns

13

parallel_for(Nj, KOKKOS_LAMBDA(int j) {
// [...]

});



Kokkos parallel patterns

14

parallel_for(Nj, KOKKOS_LAMBDA(int j) {
// [...]

});

parallel_reduce(Nj, KOKKOS_LAMBDA(int j, double& accumulator) {
// [...]
accumulator += /* [...] */ ; 

}, result);

parallel_scan(Nj, KOKKOS_LAMBDA(int j, double& result, bool isfinal) 
{

// [...]
accumulator += /* [...] */ ;
if(is_final) {

// [...]
}

}, result);

● For
○ independent iterations

● Reduce
○ Accumulate into a single 

value

● Scan
○ N independent prefix 

reduction



Kokkos parallel patterns: easy debug

15

parallel_for(“loop1”, Nj, KOKKOS_LAMBDA(int j) {
// [...]

});

● Naming loops ease debugging & profiling

● Integrated with kokkos-specific tools

● Get a trace with names includes

● Get a name in debug messages

● Omitted in the presentation, but a good practice overall



Kokkos parallel patterns: Policies

16

parallel_for(RangePolicy(1, Nj, chunk_size), KOKKOS_LAMBDA(int j) {
// [...]

});

Beyond simple 1D execution

● RangePolicy for 1D iteration
○ Begin / end iteration boundaries
○ Chunk_size hint for improved performance

● MDRange policy for multi-dimensional iterations
○ Multi-D begin / end iteration boundaries
○ Tiling hint hint for improved performance



Kokkos parallel patterns: ExecutionSpace

17

parallel_for(RangePolicy(DefaultExecutionSpace(), 0, Nj), KOKKOS_LAMBDA(int j) {
// [...]

});

● ExecutionSpace defines where to run
○ Cuda, HIP, SYCL, HPX, OpenMP, OpenMPTarget, Threads, Serial
○ 3 exec spaces per execution max: Serial + parallel Host + parallel Device

● Choose where to run at compile time with a #define
○ Usually set from CMake

● 2 predefined aliases are often enough
○ DefaultExecutionSpace: parallel Device, or parallel Host, or Serial

■ Most of the time, this is the default
○ DefaultHostExecutionSpace: parallel Host, or Serial

■ When using host-only code



Kokkos parallel patterns: hierarchical parallelism

18

parallel_for(TeamPolicy(Nj, team_size), KOKKOS_LAMBDA(const team_handle& team) {
// [...]
parallel_for(TeamThreadRange(team, Ni, chunk_size), KOKKOS_LAMBDA(int i) {

// [...]
});
// [...]

});

● Default loops can not be nested

● 2-level nesting is supported by teams of threads
○ Matches groups / threads support in GPU
○ But also available on CPU
○ Intermediate (scratch) memory allocation available

○



Kokkos parallel patterns are asynchronous

19

parallel_for(Nj, KOKKOS_LAMBDA(int j) {
// [...]

});
parallel_for(Nj, KOKKOS_LAMBDA(int j) {

// [...]
});
fence();

● Asynchronous execution

● Result visibility is only assured after a fence

● Or between kernels running on the same execution space



Kokkos views: multi-dimensional arrays

20

View<int**, MemorySpace> my_matrix("matrix", Nx, Ny);

● Multi-dimensional arrays
○ Type & dimensionality specified: int** => 2D integer array
○ Dynamic sizes are parameters: Nx, Ny
○ Static sizes are also possible: int*[4] => 2D array, 4 × dynamic

● Behaves like a C++ shared_ptr
○ Shared ownership with reference counting (like in python)

● With a name for debugging/profiling

● MemorySpace is part of the type, defaults should be used
○ CudaSpace, CudaHostPinnedSpace, CudaUVMSpace, HIPSpace, HIPHostPinnedSpace, 

HIPManagedSpace, SYCLDeviceUSMSpace, SYCLHostUSMSpace, SYCLSharedUSMSpace, 
HostSpace, SharedSpace, SharedHostPinnedSpace

○ Check of accessibility between MemorySpace & ExecutionSpace



Kokkos views copies & co.

21

void deep_copy(const ExecSpace &exec_space, const ViewDest &dest, const ViewSrc &src);

● Copy data between 2 views
○ Potentially on distinct memory spaces
○ An asynchronous operation

auto dview = subview(oview, pair(start, end), ALL, slice_idx);

● Make a new reference to a subset of an existing view
○ Modifying the result modifies the source
○ pair: select a subrange, ALL: keep the dimension, integer: slice the dimension

auto dview = create_mirror(mspace, a_view); // allocates & copy a new view of same size
auto dview = create_mirror_view_and_copy(mspace, a_view); // allocates & copy if necessary

● Allocates & copy to a new memory space



Kokkos views layout

22

View<double**, LayoutLeft> A("A", M, N);

● Layout specifies the linearization of multi-D indices into memory
○ LayoutLeft (a.k.a Fortran, default on GPU)
○ LayoutRight (a.k.a C, default on Host)
○ LayoutStride (generic, useful for subviews)



What’s in Kokkos (core library)?

23

Parallel patterns w. asynchronous support
● Independent interactions, Reductions, Scans

Iteration strategies
● Tiled, Hierarchical, … 

Multi-dimensional arrays
● Layout auto change for performance



What’s in Kokkos (core library)?

24

Parallel patterns w. asynchronous support
● Independent interactions, Reductions, Scans

Iteration strategies
● Tiled, Hierarchical, … 

Algorithms
● Sorting
● Random number generation
● Many of STL parallel algorithms
● …

QoL features: portable printf, etc.
Portable atomic operations
SIMD
Coarse & fine-grain tasks
And much more…

Multi-dimensional arrays
● Layout auto change for performance

Other containers
● Key-value maps, ScatterView … 

Automatic ref-counted Host/Device memory 
allocation & management
Host/device memory transfers
Support of “dual” arrays with one version on 
each side

● Up-to-date tracking & automatic transfers 
when required

Scratch memory
● Using “team-local” fast memory on the 

device



Kokkos Ecosystem, beyond just the Kokkos project

25

Kokkos (core)

pyKokkos

Kokkos 
kernel

Kokkos 
comm

Kokkos 
Resilience

Kokkos fft

Kokkos tools

Debugging

Profiling

Tuning

Linting

Kokkos support

Documentation

Tutorials

Trainings

Online Support

Hackatons

PETScTrilinos

ArborXDDC

Kokkos-based applications



Kokkos: a library with a history

26



ISO C++ is standardizing base tools for HPC

● Parallel programming is entering the ISO C++ language
○ Parallel algorithms, sender/receivers, etc.

● The Kokkos team spearheads the standardization of many features
○ Multi-D arrays (std::mdspan)
○ Vectorization (std::simd)
○ Linear algebra (std::linalg)
○ And much more to come (mixed precision, etc.)

Kokkos offers a stable API today for the features of the C++ of tomorrow 

● Standardization is slow (9 years for mdspan)
○ Consensus with all communities

● Kokkos offers the features today
○ And keeps maintaining a stable API on top of standardized ISO C++
○ With added interoperability layers (Cf. kokkos::view / std::mdspan)
○ And in a GPU-compatible implementation (Cf. kokkos::array)

27

Kokkos an anteroom for standard C++



28

Kokkos at the center of a virtuous cycle

©  Christian Trott & Damien Lebrun Grandie

Good product

Sustained funding Users

There is strength in numbers: 
collaboration on core products is good for everyone

More development Selection by users
More feedback

Trust in sustainability
Funding supported by users

Projects funded



Here comes HPSF

1. A neutral hub for open source, high performance software.

2. HPSF supports projects that advance portable software for diverse hardware by:
■ Increasing adoption
■ Aiding community growth
■ Enabling development efforts

3. Lowering barriers to productive use of today’s and future high performance 
computing systems.

29
Under the Linux Foundation

Come visit us 
at booth 4648



Disposition : Titre et contenu

30

Governing board

Technical Advisory Council

Projects

CI & 
Testing

Outreach Diversity

Events

WGs 

Fund & vote

Join & vote

Participate & vote

Tools …



● Joining as a member (for institutions)
○ You need to join the Linux Foundation (Non-profit/academic, as associate for $0)
○ Joining HPSF at one of three levels:

■ Premier: $175k / year
■ General: $2.5k - $50k / year depending on size of organization
■ Associate: $0 for non-profit / academic

○ Take a stand, fund it & get a say on where the funding goes to

● Joining as a project (for software project)
○ For the High Performance Computing ecosystem
○ That need a neutral home to facilitate multi-institutional collaborations
○ Providing vendor neutral solutions to engineering and science computational needs
○ Committed to building an open developer and user community

31

Two (independant) ways to participate
Find out more:

HPSF BoF, 
Tuesday 5:15PM, 

B309



● Core projects have a reliable & sustainable development process
○ The developer base is strong and diverse
○ The funding sources are multiple
○ The governance is well specified

■ No single institution has a majority in the project lead
○ The project also fulfils all Established requirements

● Established projects are production-strategic for a wide base of users
○ The user base is wide and diverse
○ The development process is well documented and newcomers-friendly
○ The development is strong and steady
○ The project also fulfils all Sandbox requirements

● Sandbox projects are free, open, neutral, and aim for the above
○ Are free, libre, open-source HPC-related projects
○ With a code of conduct
○ And an aim to widen developer and user-base beyond a single 

institution

32

HPSF Software life-cycle

Sandbox

Established

Core



Analyze & Tune
● Profile your software with 

tools targeted at HPC 
environment

● Tune your software using 
information that connects 
performance data to how 
your software leverages HPSF 
projects

Build & Deploy
● Build your software with tools 

that support all major 
computing architectures

● Deploy with cloud-ready 
packaging and container 
technologies on everything 
from your laptop to the 
largest exascale 
supercomputers

Develop & Sustain
● Leverage performance-portable 

software technologies

● Reuse high-quality scientific 
computing libraries including 
programming models, solvers, 
and visualization

● Foster community 
development for modeling and 
simulation applications

33

What kind of software is in HPSF so far?



“adopt and adapt” strategy based on      Kokkos

■ Kokkos : a strong technical basis
■ A software architecture ready for the future
■ Mature, free, libre, and open-source
■ An independent foundation to own the product

■ HPSF under the Linux Foundation
■ A standardisation effort in ISO C++

■ A stepping stone one step ahead toward HPC C++
■ Some adaptations required

■ For European hardware
■ There is no real hardware sovereignty without software sovereignty

■ For applications from CEA, France and Europe
■ Take our specificities into account

34

With CExA, CEA goes for Kokkos!



■ Core team
■ Management, implementation and 

dissemination
■ Fully integrated in the Kokkos team
■ 13 researchers from all over CEA
■ 3 recrutements done, 5 more funded
■ Funding for 3 more hires expected next year

■ Extended team
■ Demonstrator developers

■ Not funded
■ Find their own interest in the participation

■ 2-3 new demonstrators every year
■ Community

■ Federation of an expert network
■ Co-design of CExA:

■ Identification of needs
■ Usage of CExA in applications

■ Priority target for dissemination
■ Sustainability of the work

CExA project in practice
Community
Expert network

Extended team
Demonstrator developers 

Core team

in kind

funded

DAM

DES

DRF

35



36

CExA: what’s going on?

● Help with documentation
○ Website, Cheat-sheets, …

● Trainings, lots of training!
● Support our applications

○ Test unified memory viability & 
performance

○ Add required solvers to Kokkos-kernels

● Improve software quality
○ Work on GPU CI
○ Co-maintaining Kokkos Spack recipes

● Ease code migration
○ From Fortran
○ From C (with classes)
○ From OpenMP (CPU)

● Test hardware & improve kokkos for it
○ Intel PVC backend improvement
○ Nvidia Grace Hopper memory 

management handling

● Add our contributions to Kokkos 
ecosystem

○ DDC
■ Discrete data & computation

○ kokkos-fft
■ Performance portable FFT with a 

Kokkos API
○ Kokkos-comm

■ Message passing integrated with 
Kokkos



■ Kokkos is a strong vendor-neutral, performance 
portable Exascale programming model with GPU 
support

■ CExA & HPSF ensure it is a sovereign and 
sustainable approach that can be relied on for the 
foreseeable future

■ A strong dynamic all over the CEA and beyond

■ A knock-on effect with new synergies identified 
every weeks with code developers

To conclude

37



Ansar Calloo
Group leader

Mathieu Lobet
Group leader

Julien Bigot
Principal investigator

38

Cedric Chevalier
Group leader

Thomas Padioleau
Senior developer

Yuuichi Asahi
Senior developer

Rémi Baron
Senior developer

Paul Zehner
Developer

Hariprasad Kannan
Developer

The core team



39

Samuel Kokh
DES link

Patrick Carribault
DAM link

Édouard Audit
Network animator

Julien Jaeger
DAM link

Pierre Ledac
Trust/TrioCFD lead

Virginie Grandgirard
GyselaX++ lead

François Letierce
Triclade lead

The extended team



Disposition : Deux contenus

2-years HPC DevOps Engineer position
Deployment and CI on supercomputers for 
the C++ Kokkos library within the 
“Moonshot” CExA project

40

Join us & join the fun!

2-years C++ expert engineer position
Contribution to the development of the 
Kokkos GPU computing library within the 
CExA “Moonshot” project

Join the CEA’s ambitious “Moonshot” 
project, CExA, and contribute to the 
development of the Kokkos GPU 
computing library. We are recruiting six 
talented and enthusiastic C++ 
development engineers for a period of 2 
years to work at our CEA Saclay site 
near Paris.

CEA is recruiting DevOps engineers for a 
2-year period to join the CExA “Moonshot” 
project team, which is setting up CEA’s 
GPU computing software stack around the 
Kokkos C++ library, to contribute to 
innovative packaging, deployment and 
continuous integration approaches for 
supercomputers, based in particular on 
Spack. A team of more than 10 people is 
currently being set up. The positions will 
be based at the CEA Saclay site near Paris.

https://cexa-project.org 

Come visit 
us at booth 
4143: CEA

4648: HPSF

HPSF BoF, 
Tuesday 5:15PM, 

B309

https://cexa-project.org


Disposition : Titre et contenu

● Many Kokkos trainings
○ September 2023 with C. Trott & D. Lebrun Grandié in Saclay
○ March 2025 Hackathon at IDRIS
○ September 2024 w. D. Lebrun Grandié & L. Berger-Vergiat
○ November 2024 Mission Numérique CEA in Grenoble
○ January 2025 CEA/Riken winter school in Barcelona
○ January 2025 Hackathon w. 
○ February 2025 Mission numérique in Cadarache
○ Summer school 2025 w. EDF & Inria

● Kokkos slack now has a #general-fr channel (~10% of the whole community)
● CExA virtual café once a month

○ Informal presentations & discussions, in French
about Kokkos, its ecosystem & GPU at large

● Kokkos virtual tea-time once a month
○ Informal presentations & discussions, in English

about Kokkos, its ecosystem & GPU at large
○ With our US partners

41

Kokkos training & community animation


