
Disposition : Titre image

Kokkos, a library for
performance
portable GPU
programming

Seminar @ CELIA
September 25th 2024
Julien Bigot & CExA team 1

co-developed by CExA , a project for
Computing at Exascale on Accelerators at CEA

Disposition : Deux contenus

■ HPC is a tool in a wide range of domains, source of competitivity
■ At CEA, we host machines
■ To take part in the French & European HPC ecosystem

■ We just entered the Exascale era, that means GPU
■ European pre-Exascale systems: Mix of AMD & Nvidia
■ First Exascale machines planned in Europe for 2024/2025

■ Jupiter machine at Jülich (Germany) => Nvidia & Rhea
■ Alice Recoque machine at CEA/TGCC (open)

■ Need to re-develop applications with Performance portability
■ GPU programming models: software catalysts

■ France and Europe: great research but no production tool
■ A need for a long-term sustainable solution

■ Adapted to our hardware and software specificities
■ Trust in the roadmap

Context
Classical

Accelerated

2009 2014 2019 2024

10 years

10 years

Today HPC is
everyone’s
computing of
tomorrow

Top HPC

Regional
computer

Personal
computer

> 75 %

Computing power of the 500 top
supercomputers from june 2004 to june 2024
(source Top500)

100 % -

90 % -

80 % -

70 % -

60 % -

50 % -

40 % -

30 % -

20 % -

10 % -

0 % -
2004

25 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team 2

How to generate code a GPU can run?
● Low-level, assembly-style programming models

○ Nearly manipulate the actual instructions the device understands
○ E.g. HSA, Level Zero, PTX, Spir-V , …

● General-purpose, imperative GPU programming models
○ Manipulate parallel loops, reductions, data transfer to & from

device
○ E.g. Cuda, HIP, Kokkos, OpenACC, OpenMP (target), Raja, SYCL

● Combination & assembly of existing GPU kernels
○ Pytorch, StarPU, etc…

● Application framework for specific mesh types, numerical schemes
○ Use domain-specific concepts on GPU

● Pre-written GPU libraries
○ just call them from CPU
○ Neural Networks, Linear Algebra, …

G
eneralityEa

se
 o

f u
se

Performance

Performance

portability

Domain

abstractions

GPU

transparency

325 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

How to generate code a GPU can run?
● Low-level, assembly-style programming models

○ Nearly manipulate the actual instructions the device understands
○ E.g. HSA, Level Zero, PTX, Spir-V , …

● General-purpose, imperative GPU programming models
○ Manipulate parallel loops, reductions, data transfer to & from

device
○ E.g. Cuda, HIP, Kokkos, OpenACC, OpenMP (target), Raja, SYCL

● Combination & assembly of existing GPU kernels
○ Pytorch, StarPU, etc…

● Application framework for specific mesh types, numerical schemes
○ Use domain-specific concepts on GPU

● Pre-written GPU libraries
○ just call them from CPU
○ Neural Networks, Linear Algebra, …

G
eneralityEa

se
 o

f u
se

Performance

Performance

portability

Domain

abstractions

GPU

transparency

425 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

Disposition : Deux contenus

● Cuda
● HIP
● Kokkos
● OpenACC
● OpenMP (target)
● Raja
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++/OpenSYCL/hipSYCL

Available solutions

525 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

Disposition : Deux contenus

● Cuda
● HIP
● Kokkos
● OpenACC
● OpenMP (target)
● Raja
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++/OpenSYCL/hipSYCL

● Production grade, with public support

Available solutions

625 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

Disposition : Deux contenus

● Cuda
● HIP
● Kokkos
● OpenACC
● OpenMP (target)
● Raja
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++/OpenSYCL/hipSYCL

● Production grade, with public support

● Vendor neutral

Available solutions

725 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

Disposition : Deux contenus

● Cuda
● HIP
● Kokkos
● OpenACC
● OpenMP (target)
● Raja
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++/OpenSYCL/hipSYCL

● Production grade, with public support

● Vendor neutral

Available solutions

825 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

#pragma omp teams distribute parallel for
for (int j = 0 ; j < Nj ; ++j) {

// [...]
}

OpenMP & Kokkos : the simplest GPU loop

parallel_for(Nj, KOKKOS_LAMBDA(int j) {
// [...]

});

OpenMP Target Kokkos

Execute in parallel, on a separate GPU thread each,

the same workload [...]

identified by a unique identifier j

Nj times between 0 and Nj-1

for (int j = 0 ; j < Nj ; ++j) {
// [...]

}

Sequential

9

OpenMP & Kokkos : memory transfer

double* x = malloc(Ni*sizeof(double));
double* y = malloc(Nj*sizeof(double));
double* A = omp_target_alloc(

Ni*Nj*sizeof(double),
omp_get_initial_device());

#pragma omp target data \
map(to: x[0:Ni]) \
map(from: y[0:Nj])

{
#pragma omp teams distribute parallel for
for (int j = 0 ; j < Nj ; ++j) {

for (int i = 0 ; i < Ni ; ++i) {
y[j] += x[i] * A[j*Ni+i];

}
}

View<double*, Kokkos::HostSpace> x(Ni);
View<double*, Kokkos::HostSpace> y(Nj);
View<double*> A(Nj, Ni);

{
auto dx = create_mirror_view_and_copy(dev, x);
auto dy = create_mirror_view(dev, y);
parallel_for(Nj, KOKKOS_LAMBDA(int j) {

for (int i = 0 ; i < Ni ; ++i) {
dy(j) += dx(i) * A(j,i);

}
});
deep_copy(y, dy);
}

OpenMP Target Kokkos
Copy x to GPU from device before kernel

and y from GPU to device after kernel
Keep A on the device

10

Compilation

OpenMP Target

● Use an OpenMP compiler
○ Compatible with the target construct
○ Compatible with the hardware you target

● Each vendor provides its own OpenMP
compiler

○ Usually based on LLVM infra

● Default Clang/LLVM & GCC also try to
support this

○ For some hardware

Kokkos

● A C++ template library
○ No direct code generation, rely on

vendors C++-like languages

● Multiple “backends”, selection at
compile time

○ OpenMP, Cuda, OneAPI, HIP, …

● Maximum 3 backends enabled at once
○ Serial backend
○ 1 Host parallel backend (openmp)
○ 1 Device parallel backend (cuda, HIP,

Sycl)

11

Disposition : Deux contenus

● Cuda
● HIP
● Kokkos
● OpenACC
● OpenMP (target)
● Raja
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++/OpenSYCL/hipSYCL

● Production grade, with public support
● Vendor neutral

Available solutions

1225 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

Disposition : Deux contenus

● Cuda
● HIP
● Kokkos
● OpenACC
● OpenMP (target)
● Raja
● SYCL

○ OneAPI/DPC++
○ AdaptiveC++/OpenSYCL/hipSYCL

Available solutions

● Production grade, with public support
● Vendor neutral
● Annotations

○ Works best with imperative
languages: C, Fortran, …

○ Compiler integration: potential
for additional optimizations

○ Requires to re-design
applications for GPU

● Library
○ Suited to language with deep

encapsulation: C++, …
○ On top of vendor backends:

easier to port to new hardware
○ Requires to re-write applications

for GPU

1325 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

Disposition : Titre et contenu

14

With CExA, CEA chooses Kokkos

© Christian Trott & Damien Lebrun Grandie

25 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

Disposition : Titre seul

25 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team 15

CExA project: goals

Provide a
long-term

sustainable
software

catalyst for GPU
computing

Adapt
application

demonstrators

Disseminate
and offer

training for
Europeans

DRF DESDAM

Kokkos

Long-term sustainable GPU catalyst

Application demonstrators

HPC ecosystem

Launched in September 2023,
Publicly announced last ISC

Disposition : Titre et contenu

“adopt and adapt” strategy based on Kokkos

■ Kokkos : a strong technical basis
■ A software architecture ready for the future
■ Mature, free, libre, and open-source
■ An independent foundation to own the product

■ HPSF under the Linux Foundation
■ A standardisation effort in ISO C++

■ A stepping stone one step ahead toward parallel C++
■ Some adaptations required

■ For European hardware
■ There is no real hardware sovereignty without software sovereignty

■ For applications from CEA, France and Europe
■ Take our specificities into account

16

CExA in short

25 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

Disposition : Titre et contenu

25 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team 22 May 2024 17

HPSF Goals

● Provide neutral home for key HPC projects to
enable collaboration between government,
industry and academia

● Promote use of HPSF projects

● Ensure that HPC software is accessible and
reliable by providing CI and turn-key builds

● Ensure that HPC software is secure and ready
for cloud through collaborations with CNCF
and OpenSSF

● Sponsor events and training to grow a diverse,
skilled workforce for software in the HPSF
ecosystem.

Launched at last ISC

Disposition : Titre et contenu

25 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team 18

HPSF: the structure

18

Governing Board (GB)

Technical Advisory Council (TAC)

GB Committees
Marketing Budget & Finance

CI & Testing

Working Groups

Facility Engagement

Software Stacks Safety and Security
Kokkos

Technical Projects

Spack

Viskores HPCToolkit
End Users Benchmarking

Events & Training

Apptainer

E4S

Collaborations

Disposition : Titre et contenu

● Joining as a member
○ You need to join the Linux Foundation (Non-profit/academic, as associate for $0)
○ Joining HPSF at one of three levels:

■ Premier: $175k per year
■ General: $2.5k - $50k depending on size of organization
■ Associate: $0 for non-profit / academic

○ Take a stand, fund it & get a say on where the funding goes to

● Joining as a project
○ For the High Performance Computing ecosystem
○ That need a neutral home to facilitate multi-institutional collaborations
○ Providing vendor neutral solutions to engineering and science computational

needs
○ Committed to building an open developer and user community

19

Two (independant) ways to participate

25 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

Disposition : Deux contenus

■ Core team
■ Management, implementation and

dissemination
■ 8 permanent researchers from all over CEA
■ 3 recrutements done, 5 more funded

■ 1 as a permanent researcher !
■ Funding for 2 or 3 more hires expected next year

■ Extended team
■ Demonstrator developers

■ Not funded
■ Find their own interest in the participation

■ 2-3 new demonstrators every year
■ Community

■ Federation of an expert network
■ Co-design of CExA:

■ Identification of needs
■ Usage of CExA in applications

■ Priority target for dissemination
■ Sustainability of the work

CExA project in practice
Community
Expert network

Extended team
Demonstrator developers

Core team

in kind

funded

DAM

DES

DRF

2025 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

What’s in Kokkos

● Parallel patterns w. asynchronous support
○ Independent interactions, Reductions,

Scans

● Iteration strategies
○ Tiled, Hierarchical, …

● Algorithms
○ Sorting
○ Random number generation
○ Most of STL parallel algorithms
○ …

● QoL features: portable printf, etc.
● Portable atomic operations
● SIMD
● Coarse & fine-grain tasks
● And much more…

 Multi-dimensional arrays
■ Layout auto change for performance

 Other containers
■ Key-value maps, …

 Automatic ref-counted Host/Device
memory allocation & management

 Host/device memory transfers
 Support of “dual” arrays with one

version on each side
■ Up-to-date tracking & automatic

transfers when required

 Scratch memory
■ Using “core-local” fast memory on the

device

21

Kokkos parallel patterns

22

parallel_for(Nj, KOKKOS_LAMBDA(int j) {
// [...]

});

Kokkos parallel patterns

23

parallel_for(Nj, KOKKOS_LAMBDA(int j) {
// [...]

});

parallel_reduce(Nj, KOKKOS_LAMBDA(int j, double& accumulator) {
// [...]
accumulator += /* [...] */ ;

}, result);

parallel_scan(Nj, KOKKOS_LAMBDA(int j, double& result, bool isfinal)
{

// [...]
accumulator += /* [...] */ ;
if(is_final) {

// [...]
}

}, result);

● For
○ independent iterations

● Reduce
○ Accumulate into a single

value

● Scan
○ N independent prefix

reduction

Kokkos parallel patterns: easy debug

24

parallel_for(“loop1”, Nj, KOKKOS_LAMBDA(int j) {
// [...]

});

● Naming loops ease debugging & profiling

● Integrated with kokkos-specific tools

● Get a trace with names includes

● Get a name in debug messages

● Omitted in the presentation, but a good practice overall

Kokkos parallel patterns: ExecutionSpace

25

parallel_for<ExecutionSpace>(Nj, KOKKOS_LAMBDA(int j) {
// [...]

});

● ExecutionSpace defines where to run
○ Cuda, HIP, SYCL, HPX, OpenMP, OpenMPTarget, Threads, Serial
○ 3 exec spaces per execution max: Serial + parallel Host + parallel Device

● Choose where to run at compile time with a #define
○ Usually set from CMake

● 2 predefined aliases are often enough
○ DefaultExecutionSpace: parallel Device, or parallel Host, or Serial

■ Most of the time
○ DefaultHostExecutionSpace: parallel Host, or Serial

■ When using host-only code

Kokkos parallel patterns: Policies

26

parallel_for(RangePolicy(DefaultExecutionSpace(), 1, Nj, chunk_size), KOKKOS_LAMBDA(int j) {
// [...]

});

Beyond simple 1D execution

● Give an instance of ExecutionSpace for multi-GPU or multi-Stream support

● RangePolicy for 1D iteration
○ Begin / end iteration boundaries
○ Chunk_size hint for improved performance

● MDRange policy for multi-dimensional iterations
○ Multi-D begin / end iteration boundaries
○ Tiling hint hint for improved performance

Kokkos parallel patterns: hierarchical parallelism

27

parallel_for(TeamPolicy(Nj, team_size), KOKKOS_LAMBDA(const team_handle& team) {
// [...]
parallel_for(TeamThreadRange(team, Ni, chunk_size), KOKKOS_LAMBDA(int i) {

// [...]
});
// [...]

});

● Default loops can not be nested

● 2-level nesting is supported by teams of threads
○ Matches groups / threads support in GPU
○ But also available on CPU
○ Intermediate (scratch) memory allocation available

○

Kokkos parallel patterns are asynchronous

28

parallel_for(Nj, KOKKOS_LAMBDA(int j) {
// [...]

});
parallel_for(Nj, KOKKOS_LAMBDA(int j) {

// [...]
});
fence();

● Asynchronous execution

● Result visibility is only assured after a fence

● Or between kernels running on the same execution space

Kokkos views: multi-dimensional arrays

29

View<int**, MemorySpace> my_matrix("matrix", Nx, Ny);

● Multi-dimensional arrays
○ Type & dimensionality specified: int** => 2D integer array
○ Dynamic sizes are parameters: Nx, Ny
○ Static sizes are also possible: int*[4] => 2D array, 4 × dynamic

● Behaves like a C++ shared_ptr
○ Shared ownership with reference counting (like in python)

● With a name for debugging/profiling

● MemorySpace is part of the type, defaults should be used
○ CudaSpace, CudaHostPinnedSpace, CudaUVMSpace, HIPSpace, HIPHostPinnedSpace,

HIPManagedSpace, SYCLDeviceUSMSpace, SYCLHostUSMSpace, SYCLSharedUSMSpace,
HostSpace, SharedSpace, SharedHostPinnedSpace

○ Check of accessibility between MemorySpace & ExecutionSpace

Kokkos views copies & co.

30

void deep_copy(const ExecSpace &exec_space, const ViewDest &dest, const ViewSrc &src);

● Copy data between 2 views
○ Potentially on distinct memory spaces
○ An asynchronous operation

auto dview = subview(oview, pair(start, end), ALL, slice_idx);

● Make a new reference to a subset of an existing view
○ Modifying the result modifies the source
○ pair: select a subrange, ALL: keep the dimension, integer: slice the dimension

auto dview = create_mirror(mspace, a_view); // allocates & copy a new view of same size
auto dview = create_mirror_view_and_copy(mspace, a_view); // allocates & copy if necessary

● Allocates & copy to a new memory space

Kokkos views layout

31

View<double**, LayoutLeft> A("A", M, N);

● Layout specifies the linearization of multi-D indices into memory
○ LayoutLeft (a.k.a Fortran, default on GPU)
○ LayoutRight (a.k.a C, default on Host)
○ LayoutStride (generic, useful for subviews)

Kokkos hardware abstraction

32

What’s in Kokkos
● Parallel patterns w. asynchronous

support
○ Independent interactions, Reductions,

Scans

● Iteration strategies
○ Tiled, Hierarchical, …

● Algorithms
○ Sorting
○ Random number generation
○ Most of STL parallel algorithms
○ …

● QoL features: portable printf, etc.
● Portable atomic operations
● SIMD
● Coarse & fine-grain tasks
● And much more…

 Multi-dimensional arrays
■ Layout auto change for performance

 Other containers
■ Key-value maps, …

 Automatic ref-counted Host/Device
memory allocation & management

 Host/device memory transfers

 Support of “dual” arrays with one
version on each side

■ Up-to-date tracking & automatic
transfers when required

 Scratch memory
■ Using “core-local” fast memory on the

device
33

Kokkos Ecosystem

34

+ Kokkos-FFT

+ Kokkos-Comm

+ Kokkos-
Resilience

+ …

Disposition : Titre et contenu

■ Kokkos is a strong vendor-neutral, performance
portable Exascale programming model with GPU
support

■ CExA & HPSF ensure it is a sovereign and
sustainable approach that can be relied on for the
foreseeable future

■ A strong dynamic all over the CEA and beyond

■ A knock-on effect with new synergies identified
every weeks with code developers

To conclude

3525 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

Disposition : Deux contenus

36

CExA: what’s going on?

● Help with documentation
○ Website improvement
○ Cheat-sheets creation

● Support our applications
○ Test UVM viability & performance
○ Add required solvers to

Kokkos-kernels
● Improve software quality

○ Setup GPU CI for CEA libraries
○ Maintaining Kokkos Spack recipes
○ Huge refactor & redesign of

create_mirror[_view][_and_copy]

● Test hardware & improve kokkos for it
○ Intel PVC backend improvement
○ NVidia Grace Hopper memory

management handling
● Add our contributions to Kokkos

ecosystem
○ DDC

■ Discrete data & computation
○ Kokkos-FFT

■ Performance portable FFT
with a Kokkos API

○ Kokkos-comm
■ Find out more in

programming model session

Taking part in Kokkos weekly developers meetings

25 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

Disposition : Titre et contenu

● First training with Christian Trott & Damien Lebrun last september in Saclay
○ >80 participants

● Kokkos slack now has a #general-fr channel (~10% of the whole community)
● CExA virtual café once a month

○ Informal presentations & discussions, in French about Kokkos,
its ecosystem & GPU at large

● Kokkos virtual tea-time once a month
○ Informal presentations & discussions, in English

about Kokkos, its ecosystem & GPU at large
○ With our US partners

● Next Kokkos training on 17-19 June @ Saclay
○ with Damien Lebrun & Luc Berger-Vergiat
○ Registrations still open

● CEA / EDF / Inria summer school in summer 2025

37

Kokkos training & community animation

25 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

Disposition : Vide

Ansar Calloo
Group leader

Mathieu Lobet
Group leader

The core team
Julien Bigot

Principal investigator

38

Cedric Chevalier
Group leader

Thomas Padioleau
Senior developer

Yuuichi Asahi
Senior developer

Rémi Baron
Senior developer

Thomas Padioleau
Developer

25 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

Disposition : Vide

The extended team

39

Samuel Kokh
DES link

Patrick Carribault
DAM link

Édouard Audit
Network animator

Julien Jaeger
DAM link

Pierre Ledac
Trust/TrioCFD lead

Virginie Grandgirard
GyselaX++ lead

François Letierce
Triclade lead

25 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

Disposition : Deux contenus

2-years HPC DevOps Engineer position
Deployment and CI on supercomputers for
the C++ Kokkos library within the
“Moonshot” CExA project

40

Join us & join the fun!

2-years C++ expert engineer position
Contribution to the development of the
Kokkos GPU computing library within the
CExA “Moonshot” project

Join the CEA’s ambitious “Moonshot”
project, CExA, and contribute to the
development of the Kokkos GPU
computing library. We are recruiting six
talented and enthusiastic C++
development engineers for a period of 2
years to work at our CEA Saclay site
near Paris.

CEA is recruiting DevOps engineers for a
2-year period to join the CExA “Moonshot”
project team, which is setting up CEA’s
GPU computing software stack around the
Kokkos C++ library, to contribute to
innovative packaging, deployment and
continuous integration approaches for
supercomputers, based in particular on
Spack. A team of more than 10 people is
currently being set up. The positions will
be based at the CEA Saclay site near Paris.

https://cexa-project.org

25 September 2024Seminar @ CELIA – September 25th 2024 – Julien Bigot & CExA team

https://cexa-project.org

