v’ 7’ ’S:iparallel_for "COlputeSur‘,.;

0S: iparallel_for("ComputeSurfacst

\\ a> mputeT{

View<doublexee> T, @F}

0’0 dt; ,
suteT (Kokkos: :View<dow o ',
OKKOS. FUNCTION '
4 operator (int X, 4
)

!
o—

od

Kokkos in a nutshell

Thomas Padioleau
Mathieu Lobet
Julien Bigot

T(x,Y:

CExA Team

Journées des PTCs - November, 22 2023 ‘ }

Who are the CExXA members?

Research-engineers from all the CEA departments with accumulated
experiencein:

o V NabLab
* Application development
* Application support

GPU porting .
Library development V.

Researchers in computer-science i\
Numerical physics | @'ARBANE

FRAMEWORK
@ Kokkos in a nutshell 2

Disclaimers

« This presentation is partly based on the introduction slides of the Kokkos tutorials
Some slides may reflect the speaker’s opinion and not the Kokkos team’s opinion

Examples assume we are implicitly using the namespace Kokkos meaning that “Kokkos::xxxx"
becomes “xxxx” for simplicity

@ Kokkos in a nutshell

Kokkos Github -
Kokkos tutorials -
Kokkos documentation -

Kokkos Slack channel -

Ask your questions to the team
We now have a specific general-fr channel for French speakers

CExA website -
CExA GitHub -

Cea Kokkos in a nutshell

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials
https://kokkos.github.io/kokkos-core-wiki/index.html
https://kokkosteam.slack.com/
https://cexa-project.org/
https://github.com/CExA-project

Our presentation into 4 points

1.Context
2.What is Kokkos ?

3.How it works (basically)

4.Real-life example

@ Kokkos in a nutshell - plan

1 B Context

Life in our HPC world

Evolution in HPC : exotic and disruptive hardware are permanently appearing (and disappearing) in super-
computers history

@ Kokkos in a nutshell - Context 7

A lot of work for HPC developers

New technologies are exciting for researchers but may be
stressful for application developers and users :

May require vendor specific programming models
May require new programming paradigms
Algorithms may have to be rewritten

Developers must :

Update their knowledge to handle new hardware
specificity and programming models

Rewrite or duplicate part of their applications
Bet on a technology without long-term vision

@ Kokkos in a nutshell - Context 8

* A conservative estimate from the Kokkos team : An application of 200 000 lines need a full-time
engineer during a year to switch programming models

* We have been working for more than 4 years to port the SMILEI application and we are still on it
 Easier for large application teams with dedicated HPC engineers

« Impossible for applications maintained by a single physicist, PhDs or Postdocs

@ Kokkos in a nutshell - Context

Current state of HPC hardware

« Super-computers tend to be more and more heterogeneous :
The CPU is coupled with one or multiple accelerator cards,
most often GPUs

- The pure computational power is not balanced, mostly
dominated by the GPU side

NVIDIA used to dominate the HPC GPU market (as Intel used to
be for CPUSs)

* Good for technology stability (programming models,
optimization, etc)

« Bad for market price and innovation

« Today's landscape is composed of many vendors with
emergent actors :

* AMD CPUs and GPUs
* ARM based processors and accelerators
« Intel GPUs

@ Kokkos in a nutshell - Context 10

How to program heterogeneous systems

Super-computers still have multiple parallelism layers
Distributed parallelism between nodes
Inner node parallelism :
Multi-threading
* Accelerators

+ 4+

. .

Fast network
Kokkos in a nutshell - Context

Node level

Volatile memory (RAM)

CPU 1
cpy 2

Need for performance portable programming models

Developers still need a model MPI + X so far, may change in the future

A performance portable programming model offers decent performance across a wide range of architectures
using a single source code

The choice depends on the value of the cursor between many parameters :
Performance
Portability
Maturity (bugs, features)
Long-term support
Code maintainability
Programing complexity (required programming skilled)
Ecosystem and interoperability

a Kokkos in a nutshell - Context

12

m
-

2- What is Kokkos

Kokkos, what is it ?

Kokkos is performance portability parallel programming model build upon the C++-17 standard
designed to abstract already-existing parallel programming models

Compiled with
OpenMP (you decide)

CUDA

Built with
HIP Kokkos lib Application

SYCL

HPX

@ Kokkos in a nutshell - what is Kokkos

14

Kokkos, what is it ?

Kokkos is a good trade-off:

* Portable: compile for all CPU and GPU of the market and have access to
experimental hardware thanks to close contact with vendors

* Performance: build on top of vendor-specific back-ends (i.e. CUDA, HIP, SYCL)

Maturity: well established project since 2012 adopted by more than 100
projects

Long-term support: used and developed by many DOE labs, part of the ECP
project
Maintainability: descriptive single source code

* Complexity: build upon advanced C++ without the need to master it, common

objects and functions used in numerical science, extensive documentation,
tutorial materials, chat room for questions

Ecosystem and interoperability: expanding solution for common needs of
modern science and engineering codes (math libs, debuggers, performance
analysis)

@ Kokkos in a nutshell - what is Kokkos 15

The whole ecosystem picture

P N

Kokkos
Tools

Science and Engineering Applications

Trilinos

Kokkos EcoSystem

"Kokkos Remote Spaces][Kokkos Kernels

Kokkos Core

Kokkos
Support

A

@ Kokkos in a nutshell - what is Kokkos

16

Kokkos helps improve ISO C++

Kokkos helps improve ISO C++

S
‘\ea’“)(e &

’\.@6 '\0“5 Sy S
eQ (S or O
?0(\ BGO 30\! Ne Ko kkOS ro)‘%,)@pp/é
'O \e9 Sy af"’es

Kokkos Legacy
m
SN 40/@0)
by,
oy, N _@gle C++ Backport
O"% /04"@ 960
s, e ¥
Y, 'S o
/‘@& /a

Ten current or former Kokkos members are members of the ISO C++ standard committee

@ Kokkos in a nutshell - what is Kokkos

17

Kokkos main capability

Basic features:

- Parallel loop: one-dimension, multi-dimensions, reduction patterns and more like OpenMP
* Multidimensional arrays like Fortran or Python

* Memory and execution policy to decide where data is located and where kernels are run
- Implicit data layout and data access management for performance

More advanced features:

- Thread safety, thread scalability and atomic operation

* Hierarchical parallelism (threading, vectorization, SIMT, etc.)

* Optimization capability

Tools:

- Compatibility with classical debuggers and profilers

* Build-in algorithm (sorting) like Thrust and mathematic features (linear algebra)

+ Interoperability with Python, Fortran and other programming models

@ Kokkos in a nutshell - what is Kokkos

18

However, be careful, Kokkos is not
magic

@ Portability and performance portability are not the
| same

Hardware optimized algorithms may not scale

Best performance with a single source
implementation is not always possible, especially
targeting both CPU and GPU, due to hardware
differences
May need specific algorithm or parallelism
hierarchies to leverage the maximum
performance of a specific architecture

Kokkos will not do that for you
B - Trade-off between best performance and other

goals (portability, etc)

&
i

A - #
—-- L
-~ = . -
T - E i
L1 | e - -
" " T
R, et

How to use Kokkos

20

Kokkos Uses the concept of data parallelism as
OpenMP does

for (int j =0 ; j < column size ; ++j) {
for (int 1 = 0 ; i < line_size ; ++i) {

yl[il += x[1] * A[j][1i];

Pattern: structure of the computation (for, reduction, scan, graph)
Execution policy: how computations are executed (static, dynamic, task)

Body: code which performs each unit of work

Kokkos in a nutshell - how to use Kokkos

21

OpenMP versus Kokkos for a simple loop

parallel for(column size,
KOKKOS LAMBDA(const int j) {
for (int 1 = 0 ; i < line size ; +

#pragma omp parallel for
for (int j =0 ; j < column size ; ++j) {
for (int 1 = 0 ; 1 < line size ; ++1i) {

+1i) {
y[jl += x[1i] * A[jl[1i];

y(j) += x(1) * A(j,1);

* Kokkos syntax is different but still understandable as OpenMP
 Kokkos uses the notion of lambda function in C++; small structure that describes a function

@ Kokkos in a nutshell - how to use Kokkos 22

Execution pattern

What basic pattern to execute:
* Kokkos::parallel_for -

* Kokkos::parallel_reduce

* Kokkos::parallel_scan

* efc
#pragma omp parallel for reduction(+:sum) parraliel reduce(N,
For (it e KOKKOS LAMBDA(const int i, double& sum) {

_ sum += x[1i];
sum += x[i];

}I

sum)

@ Kokkos in a nutshell - how to use Kokkos 23

Execution space

Where computation is executed:

* Kokkos::serial - Serial execution on CPU

« Kokkos::DefaultHostExecutionSpace - Host execution

« Kokkos::DefaultExecutionSpace - Device if compiled for GPU, else Host

Execution space can also make the back-end explicit:
* Kokkos::Cuda

* Kokkos::OpenMP

* Kokkos::HIP

The selection depends on:
* Compile-time options

« Default choices

* Run-time choices

Warning: Kokkos only sees a single device per process. Therefore, multi-device requires MPI.

@ Kokkos in a nutshell - how to use Kokkos

24

Execution policy

How computation is executed:

* Kokkos::RangePolicy - 1D loop

* Kokkos::MDRangePolicy - multi-D loop

« Kokkos::TeamPolicy - for hierarchical parallelism

« Adapt the parallel execution to the hardware and to the characteristics of the algorithm

parallel for(
RangePolicy<DefaultExecutionSpace>(0, N),

KOKKOS LAMBDA(int n) { /* ... */ }

parallel for(N,
KOKKOS LAMBDA (int n) { /* ... */ }

);
);

@ Kokkos in a nutshell - how to use Kokkos 25

OpenMP vs Kokkos

Case 1:

* I only want to use the CPU (ignore the
GPU if exists)

* I want to use OpenMP backend

* I compile Kokkos only with the OpenMP
backend

// OpenMP

#pragma omp parallel for

for (int 1 =0 ; i < N ; ++i) {
A

@ Kokkos in a nutshell - how to use Kokkos

// Kokkos
Kokkos: :parallel for(N,

KOKKOS LAMBDA (int i) { /* ... */ }
);

// Kokkos explicit execution policy

Kokkos: :parallel for(
Kokkos: :RangePolicy<Kokkos: :DefaultExecutionSpace
> (0, N),

KOKKOS LAMBDA(int n) {
77 oo T

);

// Kokkos explicited execution policy

Kokkos: :parallel for(
Kokkos: :RangePolicy<Kokkos: :0penMP>(O, N),

KOKKOS LAMBDA(int n) {
/* .0 x/

26

OpenMP vs Kokkos

Case 2:
* T use a hybrid node with a CPU and a GPU
* I compile Kokkos with OpenMP for the CPU

and with CUDA for the GPU // Kokkos CPU code

parallel for(
RangePolicy<DefaultHostExecutionSpace>(0, N),

// OpenMP CPU code KOKKOS LAMBDA(int n) {

#pragma omp parallel for “ VY
for (int 1 =0 ; 1 <N ; ++1) { }

AREE)
}

// Kokkos GPU code

// OpenMP GPU code parallel for(

#pragma omp target teams distribute parallel for

for (int 1 =0 ; 1 <N ; ++1i) { H,
75 KOKKOS LAMBDA(int n) {

} /¥ ... X/

RangePolicy<DefaultExecutionSpace>(0, N

@ Kokkos in a nutshell - how to use Kokkos

Loops and debugging

* Each loop can be assigned a name to facilitate the debugging part

// Kokkos // Kokkos
Kokkos: :parallel for(N, Kokkos: :parallel for("my loop", N,
KOKKOS LAMBDA (int i) { /* ... */ } KOKKOS LAMBDA (int i) { /* ...

););

@ Kokkos in a nutshell - how to use Kokkos

*/ }

28

Multi-D Arrays equivalent = Kokkos::view

*Kokkos::view is a class designed to represent a multi-dimensional array with additional
capabilities:

¢ Simple accessor (i, j ,k ...)

* Abstracted or explicit memory layout (row major, column major, etc.)

 Static or dynamic dimensions

* Resize capacity like std::vector

¢ Memory space - where the array is stored

* Memory Traits - additional properties (atomic operation, shared memory, etc.)
* Can be assigned a name for debugging

* Shallow copy by default like Python (reference counting)

29

Kokkos in a nutshell - how to use Kokkos

Kokkos::view simple examples

// simple 1d array
View <int*> A ("A",N);

// 3d dynamic array
View <double***> A ("A",Nx, Ny, Nz);

// simple 1d array with static dimension
View<char[4]> A ("A");

// partly static/dynamic 2d array
View<float*[4]> A ("A",N);

@ Kokkos in a nutshell - how to use Kokkos

30

Memory Space

* On heterogeneous systems, devices have a separate memory from the RAM
* Memory space enables to decide where the view data is located:

* Kokkos::HostSpace

* Kokkos::CudaSpace

* Kokkos::HIPSpace

* Kokkos::SharedSpace - for unified memory between host and device

* By default, the memory space is the one of the default Execution Space (should
be the device if using it)

* Contratry to OpenMP or OpenACC, no need to map a host and device view

@ Kokkos in a nutshell - how to use Kokkos

31

Kokkos:.view examples with Memory Space

// simple 1d dynamic array
View <int*, HostSpace> A ("A",N);

// simple 1d dynamic array
View <int*, DefaultExecutionSpace::memory space> A ("A",N);

// 3d dynamic array allocated in the device memory using CUDA
View <double***,6 CudaSpace> A ("A",Nx, Ny, Nz);

@ Kokkos in a nutshell - how to use Kokkos

32

Memory layout

The layout is how the memory is stored and organized
The data layout can impact the performance and depends on the computing architecture
Kokkos determines the suitable layout by default for the memory space

Row-major order Column-major order

3 1 2 3

3 2 3

. 3 _ 3

Kokkos::LayoutRight - Row-major order
Kokkos::LayoutLeft - Column-major order
Kokkos::LayoutStride - custom ordering

@ Kokkos in a nutshell - how to use Kokkos

Kokkos:.view examples with Layout

// simple 2d array (default layout)
View <int**, HostSpace> A ("A",N, M);

// simple 2d array

View <int**, HostSpace, LayoutRight> A ("A",N, M);
View <int**, HostSpace, LayoutLeft> A ("A",N, M);

@ Kokkos in a nutshell - how to use Kokkos

34

Memory traits

* Memory traits are additional properties given to the view on how the data is accessed

* Kokkos::Unmanaged - allocation is not managed by Kokkos, can be useful to map a
view with an already existing array (via std::vector or cudaMalloc for instance)

« Kokkos::Atomics - atomics operations on the array elements

* Kokkos::RandomAccess - optimize for random access. If the view is also const this will
trigger special load operations on GPUs (i.e. texture fetches).

« Kokkos::restrict - There is no aliasing of the view by other data structures in the current
scope

35

@ Kokkos in a nutshell - how to use Kokkos

Building applications with Kokkos

* Kokkos primary build system is CMAKE
* Makefile can be designed for simple projects

* Kokkos can be built and installed easily from sources as a library (recommended for large
applications)

It can be built as well inline

* It can be pulled via Spack

* The back-end to use is provided at compile time, for instance
* -Dkokkos_ENABLE_CUDA=ON
* -Dkokkos_ENABLE_OPENMP=0ON

* One CPU, one GPU and one serial backend at a time
* Device architecture can as well be provided if not detected by default

@ Kokkos in a nutshell - how to use Kokkos

36

Kokkos:.view examples with Layout

int main(int argc, char* argvl[])

{

constexpr int nvar = 2; // compile time size

int nx = 100; // run time
size

double* array = new double[nx*nvar];

for (int ix=0; ix<nx; ++iXx)

{

array[ix*2 + 0] = 1.0%*ix;
array[ix*2 + 1] = 2.0%ix;
}
return 0;

}

@ Kokkos in a nutshell - how to use Kokkos

int main(int argc, char* argvl[])
{

Kokkos: :ScopeGuard scope(argc, argv); //
initialize & finalize

constexpr int nvar = 2; // compile time size
int nx = 100; // run time
size
Kokkos: :View<double*[nvar]> array("Array",
nx);

Kokkos: :parallel for(nx, KOKKOS LAMBDA (int
iXx)

{

array(ix, 0) = 1.0%ix;
array(ix, 1) = 2.0%ix;
1)
return 0;

}

37

4- Real-life examples

38

porting ParFlow to GPU

EoCoE-II

Atmaspheric

forcings

(3|1dinjnw) aocuewloliad aAlle|9Y

108

o~ ~ — — LN o
D ﬂ [|
o] [|
(@] [|
[l I NN
Ol] —_
) — oX
-
G k-]
p IIIIIIIIIIIIIIIIIIIII
m —
= =
© S
Q o)
o o U
2 £ ©
n 0 &
Qg 00O =S BECA G B i
o a XX &
Ll D oo]
W O Vv Vv > a
— Y
£ 226 Y
T ST ST W
BB v SAUNUUNNN 'S - - N----}--1-
I WYy R N N W W 1
L OO0 00 e e A, N A N W
0 et s -
o 1N
— } |
o) N < m o~ — o
(S/S||=22) @duewdoliad
..... i zmm =} -
z . TR
[.m. .,_m. e [w] yidap eqe; Jegem
¢
M..r..m”.. w ,.._w_.mfw |
583) m [
..,ﬁ.au”.x._.. ¥
-t -
5 5
i = ﬁm
- im. st
HE i
gy L A
iig y_____aay
< ; 4

Roat zone

107

Total number of cells

=20
ne (Meteorological Institute, University of Bonn)

40

20

0

39

Kokkos in a nutshell - real-life examples

A perfect choice for students starting a new code:

Students learn how to use a cutting-edge
technology

They can sell it in research and industry (better
than Fortran)

Facilitate the creation of new applications

Facilitate the GPU porting of these applications
(learning slope much faster than any
programming model)

Applications are ready to run on most-advanced
super-computers whatever the architecture
without any strong expertise (just need to add the
distributed parallelism)

Cea Kokkos in a nutshell - real-life examples

Ko”(OS: sPparall

Conclusion

- Kokkos is a C++ meta-programming performance
sLruct ComputeT { portable library

Kokkos: 'View<doubtexlP - Kokkos enables a single-source implementation to run
on multiple architectures (CPU, GPU) efficiently
double dt: \

ComputeT(Kokkos::

KOKKOS_FUNCTION
void operator() (int

Target both new users and advanced C++ users, no
need to be a C++ expert to understand the basic
concepts

Simple things stay simple
Not a research library, designed for productivity

Combine advantages of many existing programming
models and languages

T(x,y,2) += O

Suitable for scientific applications (multi-D array, linear
algebra, etc)

41

fﬂOfOfﬂOfOfOfOf
fﬂf‘”ﬂOﬂOfﬂ

Merci pour votre attention

