
Kokkos in a nutshell
Thomas Padioleau
Mathieu Lobet
Julien Bigot

CExA Team

Journées des PTCs – November, 22 2023

2Kokkos in a nutshell

Who are the CExA members?

KNL
CELLCRAY

INTEL GPU ?

Research-engineers from all the CEA departments with accumulated
experience in :
• Application development
• Application support
• GPU porting
• Library development
• Researchers in computer-science
• Numerical physics

3Kokkos in a nutshell

Disclaimers

KNL
CELLCRAY

INTEL GPU ?

• This presentation is partly based on the introduction slides of the Kokkos tutorials
• Some slides may reflect the speaker’s opinion and not the Kokkos team’s opinion
• Examples assume we are implicitly using the namespace Kokkos meaning that “Kokkos::xxxx”

becomes “xxxx” for simplicity

Kokkos in a nutshell 4

Useful links and Materials

• Kokkos Github – https://github.com/kokkos

• Kokkos tutorials – https://github.com/kokkos/kokkos-tutorials

• Kokkos documentation - https://kokkos.github.io/kokkos-core-wiki/index.html

• Kokkos Slack channel - https://kokkosteam.slack.com
• Ask your questions to the team
• We now have a specific general-fr channel for French speakers

• CExA website - https://cexa-project.org/

• CExA GitHub - https://github.com/CExA-project

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials
https://kokkos.github.io/kokkos-core-wiki/index.html
https://kokkosteam.slack.com/
https://cexa-project.org/
https://github.com/CExA-project

5

1.Context
2.What is Kokkos ?
3.How it works (basically)
4.Real-life example

Our presentation into 4 points

Kokkos in a nutshell - plan

6

Context1

7

Evolution in HPC : exotic and disruptive hardware are permanently appearing (and disappearing) in super-
computers history

Kokkos in a nutshell - Context

Life in our HPC world

KNL
CELLCRAY

INTEL GPU ?

8

New technologies are exciting for researchers but may be
stressful for application developers and users :

• May require vendor specific programming models
• May require new programming paradigms
• Algorithms may have to be rewritten

Developers must :

• Update their knowledge to handle new hardware
specificity and programming models

• Rewrite or duplicate part of their applications
• Bet on a technology without long-term vision

Kokkos in a nutshell - Context

A lot of work for HPC developers

Disposition : Visuel haut + contenu

Astuce :Après avoir insérez votre image, placez celle-ci en arrière plan : Clic droit + « Arrière plan »
Astuce :Après avoir insérez votre image, adaptez si besoin la couleur du texte en fonction de celle-ci

Kokkos in a nutshell - Context 9

• A conservative estimate from the Kokkos team : An application of 200 000 lines need a full-time
engineer during a year to switch programming models

• We have been working for more than 4 years to port the SMILEI application and we are still on it

• Easier for large application teams with dedicated HPC engineers

• Impossible for applications maintained by a single physicist, PhDs or Postdocs

A lot of work for HPC developers

Disposition : Contenu + visuel

28/10/2022Kokkos in a nutshell - Context 10

• Super-computers tend to be more and more heterogeneous :
The CPU is coupled with one or multiple accelerator cards,
most often GPUs

• The pure computational power is not balanced, mostly
dominated by the GPU side

• NVIDIA used to dominate the HPC GPU market (as Intel used to
be for CPUs)
• Good for technology stability (programming models,

optimization, etc)
• Bad for market price and innovation

• Today's landscape is composed of many vendors with
emergent actors :
• AMD CPUs and GPUs
• ARM based processors and accelerators
• Intel GPUs

Current state of HPC hardware

10

Disposition : Visuel + contenu

28/10/2022 11

How to program heterogeneous systems

Kokkos in a nutshell - Context

• Super-computers still have multiple parallelism layers
• Distributed parallelism between nodes
• Inner node parallelism :

• Multi-threading
• Accelerators Volatile memory (RAM)

Node level

Fast network

CPU 1

CPU 2

GPU 1

GPU 2

Disposition : Visuel + contenu

12

Need for performance portable programming models

Kokkos in a nutshell - Context

• Developers still need a model MPI + X so far, may change in the future

• A performance portable programming model offers decent performance across a wide range of architectures
using a single source code

• The choice depends on the value of the cursor between many parameters :
• Performance
• Portability
• Maturity (bugs, features)
• Long-term support
• Code maintainability
• Programing complexity (required programming skilled)
• Ecosystem and interoperability

13

What is Kokkos2

Kokkos in a nutshell – what is Kokkos 14

Kokkos, what is it ?
Kokkos is performance portability parallel programming model build upon the C++-17 standard
designed to abstract already-existing parallel programming models

OpenMP

CUDA

HIP

SYCL

ApplicationKokkos lib

Compiled with
(you decide)

Built with

HPX

Kokkos in a nutshell – what is Kokkos 15

Kokkos, what is it ?
Kokkos is a good trade-off:
• Portable: compile for all CPU and GPU of the market and have access to

experimental hardware thanks to close contact with vendors
• Performance: build on top of vendor-specific back-ends (i.e. CUDA, HIP, SYCL)
• Maturity: well established project since 2012 adopted by more than 100

projects
• Long-term support: used and developed by many DOE labs, part of the ECP

project
• Maintainability: descriptive single source code
• Complexity: build upon advanced C++ without the need to master it, common

objects and functions used in numerical science, extensive documentation,
tutorial materials, chat room for questions

• Ecosystem and interoperability: expanding solution for common needs of
modern science and engineering codes (math libs, debuggers, performance
analysis)

Kokkos in a nutshell – what is Kokkos 16

The whole ecosystem picture

Kokkos in a nutshell – what is Kokkos 17

Kokkos helps improve ISO C++

Ten current or former Kokkos members are members of the ISO C++ standard committee

Basic features:

• Parallel loop: one-dimension, multi-dimensions, reduction patterns and more like OpenMP

• Multidimensional arrays like Fortran or Python

• Memory and execution policy to decide where data is located and where kernels are run

• Implicit data layout and data access management for performance

More advanced features:

• Thread safety, thread scalability and atomic operation

• Hierarchical parallelism (threading, vectorization, SIMT, etc.)

• Optimization capability

Tools:

• Compatibility with classical debuggers and profilers

• Build-in algorithm (sorting) like Thrust and mathematic features (linear algebra)

• Interoperability with Python, Fortran and other programming models

Kokkos in a nutshell – what is Kokkos 18

Kokkos main capability

Disposition : Visuel + contenu

19

Portability and performance portability are not the
same

• Hardware optimized algorithms may not scale
• Best performance with a single source

implementation is not always possible, especially
targeting both CPU and GPU, due to hardware
differences
• May need specific algorithm or parallelism

hierarchies to leverage the maximum
performance of a specific architecture

• Kokkos will not do that for you
• Trade-off between best performance and other

goals (portability, etc)

However, be careful, Kokkos is not
magic

20

How to use Kokkos3

Kokkos in a nutshell – how to use Kokkos 21

Kokkos Uses the concept of data parallelism as
OpenMP does

for (int j = 0 ; j < column_size ; ++j) {

for (int i = 0 ; i < line_size ; ++i) {

y[j] += x[i] * A[j][i];

}

}

Pattern: structure of the computation (for, reduction, scan, graph)

Execution policy: how computations are executed (static, dynamic, task)

Body: code which performs each unit of work

Kokkos in a nutshell – how to use Kokkos 22

OpenMP versus Kokkos for a simple loop

#pragma omp parallel for

for (int j = 0 ; j < column_size ; ++j) {

for (int i = 0 ; i < line_size ; ++i) {

y[j] += x[i] * A[j][i];

}

}

parallel_for(column_size,

KOKKOS_LAMBDA(const int j) {

for (int i = 0 ; i < line_size ; +
+i) {

y(j) += x(i) * A(j,i);

}

}

)

• Kokkos syntax is different but still understandable as OpenMP
• Kokkos uses the notion of lambda function in C++: small structure that describes a function

Kokkos in a nutshell – how to use Kokkos 23

Execution pattern

What basic pattern to execute:
• Kokkos::parallel_for -
• Kokkos::parallel_reduce
• Kokkos::parallel_scan
• etc

#pragma omp parallel for reduction(+:sum)

for (int i = 0 ; i < N ; ++i) {

sum += x[i];

}

parallel_reduce(N,

KOKKOS_LAMBDA(const int i, double& sum) {
sum += x[i];

},

sum)

Kokkos in a nutshell – how to use Kokkos 24

Execution space

Where computation is executed:
• Kokkos::serial – Serial execution on CPU
• Kokkos::DefaultHostExecutionSpace – Host execution
• Kokkos::DefaultExecutionSpace - Device if compiled for GPU, else Host

Execution space can also make the back-end explicit:
• Kokkos::Cuda
• Kokkos::OpenMP
• Kokkos::HIP

The selection depends on:
• Compile-time options
• Default choices
• Run-time choices

Warning: Kokkos only sees a single device per process. Therefore, multi-device requires MPI.

Kokkos in a nutshell – how to use Kokkos 25

Execution policy

How computation is executed:
• Kokkos::RangePolicy – 1D loop
• Kokkos::MDRangePolicy – multi-D loop
• Kokkos::TeamPolicy – for hierarchical parallelism

• Adapt the parallel execution to the hardware and to the characteristics of the algorithm

parallel_for(N,

KOKKOS_LAMBDA (int n) { /* ... */ }

);

parallel_for(

RangePolicy<DefaultExecutionSpace>(0, N),

 KOKKOS_LAMBDA(int n) { /* ... */ }

);

28/10/2022

Kokkos in a nutshell – how to use Kokkos

26

OpenMP vs Kokkos
Case 1:
• I only want to use the CPU (ignore the

GPU if exists)
• I want to use OpenMP backend
• I compile Kokkos only with the OpenMP

backend

// Kokkos

Kokkos::parallel_for(N,

KOKKOS_LAMBDA (int i) { /* ... */ }

);

// Kokkos explicit execution policy

Kokkos::parallel_for(
Kokkos::RangePolicy<Kokkos::DefaultExecutionSpace
>(0, N),

KOKKOS_LAMBDA(int n) {

/* ... */

}

);

// OpenMP

#pragma omp parallel for

for (int i = 0 ; i < N ; ++i) {

/* ... */

}

// Kokkos explicited execution policy

Kokkos::parallel_for(
Kokkos::RangePolicy<Kokkos::OpenMP>(0, N),

KOKKOS_LAMBDA(int n) {

/* ... */

}

);

26

28/10/2022

Kokkos in a nutshell – how to use Kokkos

27

OpenMP vs Kokkos
Case 2:
• I use a hybrid node with a CPU and a GPU
• I compile Kokkos with OpenMP for the CPU

and with CUDA for the GPU // Kokkos CPU code

parallel_for(
RangePolicy<DefaultHostExecutionSpace>(0, N),

KOKKOS_LAMBDA(int n) {

/* ... */

}

);

// OpenMP CPU code

#pragma omp parallel for

for (int i = 0 ; i < N ; ++i) {

/* ... */

}

// Kokkos GPU code

parallel_for(

RangePolicy<DefaultExecutionSpace>(0, N
),

KOKKOS_LAMBDA(int n) {

/* ... */

}

);

// OpenMP GPU code

#pragma omp target teams distribute parallel for

for (int i = 0 ; i < N ; ++i) {

/* ... */

}

Kokkos in a nutshell – how to use Kokkos

Loops and debugging
• Each loop can be assigned a name to facilitate the debugging part

28

// Kokkos

Kokkos::parallel_for(N,

KOKKOS_LAMBDA (int i) { /* ... */ }

);

// Kokkos

Kokkos::parallel_for("my loop", N,

KOKKOS_LAMBDA (int i) { /* ... */ }

);

Kokkos in a nutshell – how to use Kokkos

29

Multi-D Arrays equivalent = Kokkos::view
•Kokkos::view is a class designed to represent a multi-dimensional array with additional
capabilities:
• Simple accessor (i, j ,k …)
• Abstracted or explicit memory layout (row major, column major, etc.)
• Static or dynamic dimensions
• Resize capacity like std::vector
• Memory space – where the array is stored
• Memory Traits – additional properties (atomic operation, shared memory, etc.)
• Can be assigned a name for debugging
• Shallow copy by default like Python (reference counting)

Kokkos in a nutshell – how to use Kokkos

30

Kokkos::view simple examples

// simple 1d array

View <int*> A ("A",N);

// 3d dynamic array

View <double***> A ("A",Nx, Ny, Nz);

// simple 1d array with static dimension

View<char[4]> A ("A");

// partly static/dynamic 2d array

View<float*[4]> A ("A",N);

Kokkos in a nutshell – how to use Kokkos

31

Memory Space
• On heterogeneous systems, devices have a separate memory from the RAM
• Memory space enables to decide where the view data is located:

• Kokkos::HostSpace
• Kokkos::CudaSpace
• Kokkos::HIPSpace
• Kokkos::SharedSpace – for unified memory between host and device

• By default, the memory space is the one of the default Execution Space (should
be the device if using it)

• Contratry to OpenMP or OpenACC, no need to map a host and device view

Kokkos in a nutshell – how to use Kokkos

32

Kokkos::view examples with Memory Space

// simple 1d dynamic array

View <int*, HostSpace> A ("A",N);

// simple 1d dynamic array

View <int*, DefaultExecutionSpace::memory_space> A ("A",N);

// 3d dynamic array allocated in the device memory using CUDA

View <double***, CudaSpace> A ("A",Nx, Ny, Nz);

Kokkos in a nutshell – how to use Kokkos

33

Memory layout
• The layout is how the memory is stored and organized
• The data layout can impact the performance and depends on the computing architecture
• Kokkos determines the suitable layout by default for the memory space

• Kokkos::LayoutRight – Row-major order
• Kokkos::LayoutLeft – Column-major order
• Kokkos::LayoutStride – custom ordering

Kokkos in a nutshell – how to use Kokkos

34

Kokkos::view examples with Layout

// simple 2d array (default layout)

View <int**, HostSpace> A ("A",N, M);

// simple 2d array

View <int**, HostSpace, LayoutRight> A ("A",N, M);

View <int**, HostSpace, LayoutLeft> A ("A",N, M);

Kokkos in a nutshell – how to use Kokkos

35

Memory traits
• Memory traits are additional properties given to the view on how the data is accessed

• Kokkos::Unmanaged – allocation is not managed by Kokkos, can be useful to map a
view with an already existing array (via std::vector or cudaMalloc for instance)

• Kokkos::Atomics – atomics operations on the array elements
• Kokkos::RandomAccess – optimize for random access. If the view is also const this will

trigger special load operations on GPUs (i.e. texture fetches).
• Kokkos::restrict - There is no aliasing of the view by other data structures in the current

scope

Kokkos in a nutshell – how to use Kokkos

36

Building applications with Kokkos
• Kokkos primary build system is CMAKE
• Makefile can be designed for simple projects

• Kokkos can be built and installed easily from sources as a library (recommended for large
applications)

• It can be built as well inline
• It can be pulled via Spack

• The back-end to use is provided at compile time, for instance
• -Dkokkos_ENABLE_CUDA=ON
• -Dkokkos_ENABLE_OPENMP=ON

• One CPU, one GPU and one serial backend at a time
• Device architecture can as well be provided if not detected by default

Kokkos in a nutshell – how to use Kokkos

37

Kokkos::view examples with Layout

int main(int argc, char* argv[])
{

 constexpr int nvar = 2; // compile time size
 int nx = 100; // run time
size
 double* array = new double[nx*nvar];

 for (int ix=0; ix<nx; ++ix)
 {
 array[ix*2 + 0] = 1.0*ix;
 array[ix*2 + 1] = 2.0*ix;
 }

 return 0;
}

int main(int argc, char* argv[])
{
 Kokkos::ScopeGuard scope(argc, argv); //
initialize & finalize

 constexpr int nvar = 2; // compile time size
 int nx = 100; // run time
size
 Kokkos::View<double*[nvar]> array("Array",
nx);

 Kokkos::parallel_for(nx, KOKKOS_LAMBDA (int
ix)
 {
 array(ix, 0) = 1.0*ix;
 array(ix, 1) = 2.0*ix;
 });

 return 0;
}

38

Real-life examples4

Kokkos in a nutshell – real-life examples

EoCoE-II: porting ParFlow to GPU

39

Disposition : Contenu + visuel

28/10/2022Kokkos in a nutshell – real-life examples 40

• A perfect choice for students starting a new code:
• Students learn how to use a cutting-edge

technology
• They can sell it in research and industry (better

than Fortran)
• Facilitate the creation of new applications
• Facilitate the GPU porting of these applications

(learning slope much faster than any
programming model)

• Applications are ready to run on most-advanced
super-computers whatever the architecture
without any strong expertise (just need to add the
distributed parallelism)

Kokkos, an excellent tool for students

41

Disposition : Visuel + contenu

• Kokkos is a C++ meta-programming performance
portable library

• Kokkos enables a single-source implementation to run
on multiple architectures (CPU, GPU) efficiently

• Target both new users and advanced C++ users, no
need to be a C++ expert to understand the basic
concepts

• Simple things stay simple
• Not a research library, designed for productivity
• Combine advantages of many existing programming

models and languages
• Suitable for scientific applications (multi-D array, linear

algebra, etc)

Conclusion

Merci pour votre attention

