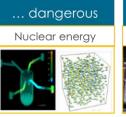
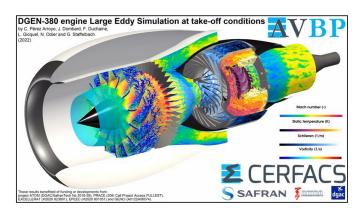

Le projet Exascale Jules Verne

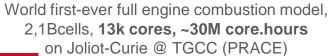


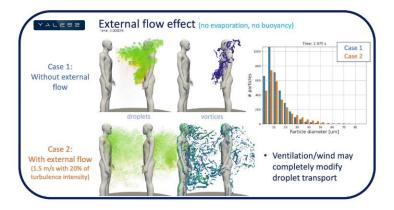
Nicolas Lardjane, CEA, Responsable TGCC

HPC: un défi majeur pour la compétitivité de l'industrie et la recherch

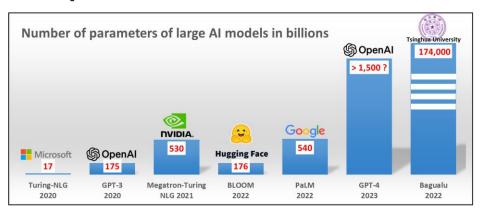
> Les simulations numériques préparent/complètent/remplacent les expériences/observations quand ...







- Les simulations HPC permettent de :
 - ☐ Traiter des systèmes multi-échelles, optimiser, valider, propager les incertitudes, réduire le nombre de maquettes, ...
 - Apporter des éléments d'aide à la décision en cas de crise (PRACE COVID-19 Fast Track projects for urgent computing)
 - ☐ Analyser de vastes ensembles de données, développer de grands modèles d'IA, ...


Au prix de ressources informatiques importantes

Dynamic evolution of sprays and risk transmission of the Covid-19 virus, LEGI, Coria, SafranTech, IMAG **10 millions core hours** on Joliot-Curie @ TGCC

The training of the BLOOM model took 117 days on 384 GPUs (Nvidia A100@80GB) of Jean-Zay @ IDRIS Training of the Bagualu model over 37M CPU cores!

Paysage mondial des ressources HPC (pré-)exascale

Aurora, >2 EF peak, Q3/2023, Argonne National Laboratory, HPE Cray, ~65K Intel GPU Max, 21K Intel Max CPU

El Capitan, >2 EF peak, Q1/2024, ~30 MW, Lawrence Livermore National Lab HPE Cray, AMD MI300A APU

1, Frontier, 1.2 EF HPL, 2022, 22MW, Oak Ridge National Laboratory (ORNL) HPE Cray, ~38K AMD MI250X

Jules Verne project (EuroHPC), Q4/2025, TGCC CEA, France

Jupiter (EuroHPC), ? EF peak, Q4/2024, 20MW, Hybrid, Jülich Supercomputing Centre (JSC), Germany

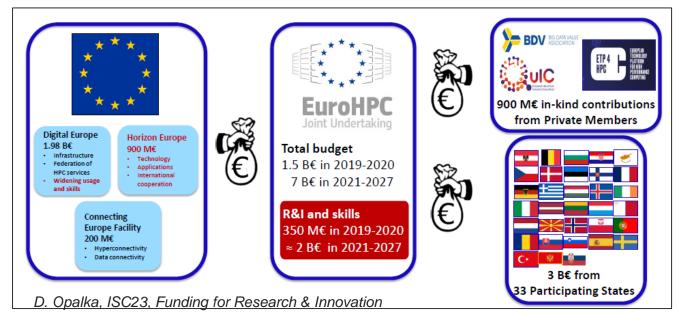
~10K AMD MI250X

#2, Fugaku, ~440 PF HPL, 2020, 30 MW, **RIKEN** Center for Computational Science, Japan. Fujitsu A64FX 7,630,848 cores

MareNostrum 5 (EuroHPC), ~200 PF HPL, Q4/2023, BSC Spain, **Atos, Nvidia H100 GPUs**

#4, ~240 PF HPL, 2023, 7,5 MW, Leonardo (EuroHPC), CINECA, Italy, Atos XH2000, ~14K Nvidia A100

Not listed in Top500


- Tianhe-3, ~1 EF HPL, 2021, ~35 MW, Matrix 2000+ MTP accelerator
- Sunway-OceanLight, ~1 EF HPL, 2021, ~35 MW, ~37M cores SW26010-Pro 3

A propos d'EuroHPC

EuroHPC JU (European High Performance Computing Joint Undertaking) est une initiative conjointe de l'UE, de pays européens, et de partenaires privés créée en 2018 pour :

- faire de l'Europe un leader mondial dans le domaine du HPC,
- > renforcer l'excellence scientifique et la puissance industrielle de l'Europe,
- > soutenir la transformation numérique de son économie et assurer sa souveraineté technologique.

Budget 2021-2027: 7B€

EuroHPC met en commun les ressources de ses membres pour :

- > Déployer en Europe une infrastructure de supercalculateurs, de calcul quantique, de services, et de données
- > Soutenir en Europe le **développement** de composants, de technologies et d'applications innovantes
 - Élargir l'**utilisation** des infrastructures HPC et quantiques à un grand nombre d'utilisateurs publics et privés

Feuille de route infrastructure d'EuroHPC

Feuille de route Ecascale :

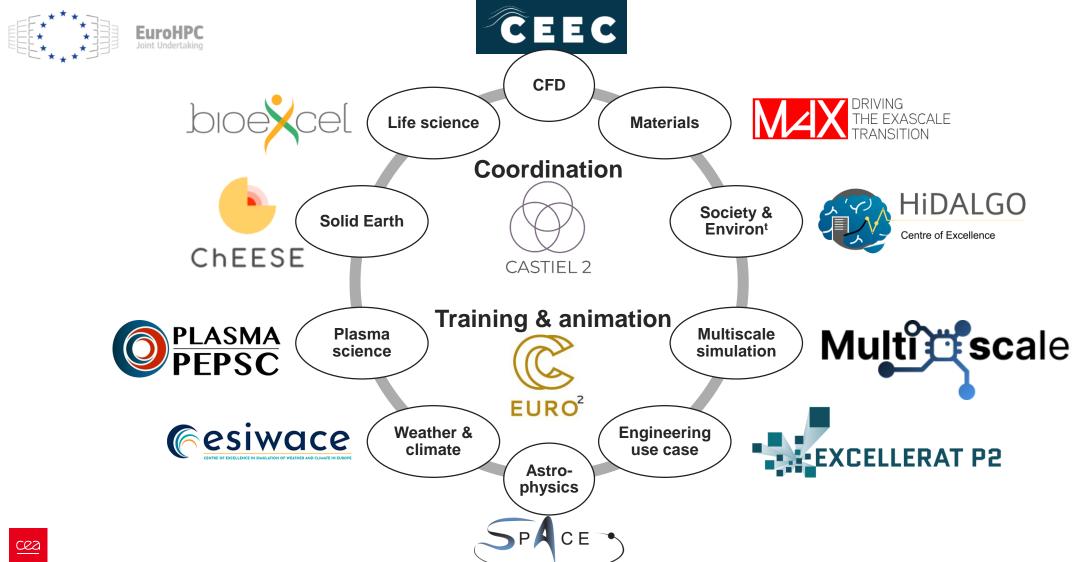
	2019 & 2020	2021	2022	2023	2024	2025	2026	2027
HPC Infrastructure	pre-exascale + petascale HPC systems		al pre-ex exascale		DATE OF THE PARTY OF THE PARTY.	exas	ale and scale Hi ystems	PC

- 12/2021, 1er AMI Exascale : sélection de la candidature Allemande (FZJ) appelée JUPITER
- > 12/2022, 2nd AMI Exascale : sélection de la candidature du consortium Jules Verne porté par la France

Feuille de route Calcul Quantique :

	2019 & 2020	2021	2022	2023	2024	2025	2026	2027
Quantum Infrastructure	Quantum simulators interfacing with HPC systems	co		+ quant		quantun	eneratio n compi m simu	uters +

- ➤ En 12/2021, EuroHPC a lancé le **projet de recherche HPCQS** visant à **coupler le simulateur quantique de Pasqal (100 qubits) aux ordinateurs du TGCC et de Julich.**⟨HPC|@
- ➤ En 03/2022, sélection du projet EuroQCS visant à mettre à disposition des chercheurs européens divers ordinateurs quantiques interfacés aux calculateurs HPC classiques
 - EuroQCS-France (FR, GE, IR, RO) utilisera une machine quantique de type photonique





Centres d'Excellence et de Compétence d'EuroHPC

En 2023, 10 centres d'excellence pour soutenir la recherche et l'innovation afin de développer et d'adapter les applications HPC pour l'exascale (90M€, 2023-2025) - suite des CoE H2020.

Le projet Jules Verne

Le consortium Jules Verne

Jules Verne consortium

- ➤ GENCI Hosting Entity
- ➤ CEA Hosting Site
- ➤SURF (NL) partner

Hosting Entity: GENCI

Chargé de la mise en œuvre de la stratégie nationale pour le calcul à haute performance, l'intelligence artificielle, le stockage de données et l'informatique quantique.

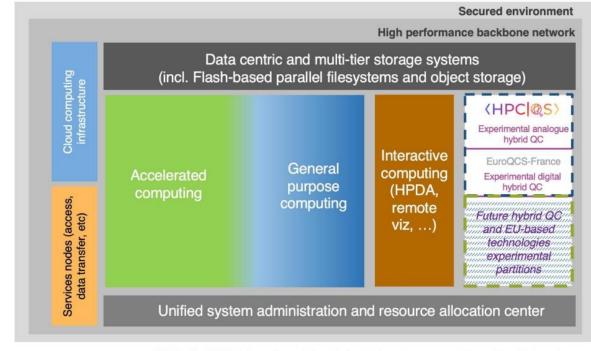
- associés MESR, CEA, CNRS, France Universités, Inria
- 3 superordinateurs, allocation >2 milliards d'heures.cœur, 1300 projets en 2022 (600 en Al)

Hosting Site: CEA/TGCC

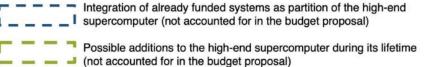
Bâtiment, infrastructure, équipes opérationnelles, support

Partenaires:

- > SURF (Pays-Bas)
 - En charge de la coordination des moyens informatiques pour l'éducation et la recherché aux Pays-Bas
 - o SURF contribuera à l'équipe de support applicatif
- > Autres ?
- ➤ Lettre d'intention : ONERA, IFPEN



Les objectifs du projet Jules Verne


- ➤ Relever les défis sociétaux et scientifiques (sciences de l'univers, changement climatique, santé, nouvelles énergies, matériaux innovants, transports, villes/systèmes intelligents, ...) grâce à des simulations numériques de grande ampleur et à l'analyse de données massives à l'aide de l'IA.
- ➤ Intégrer les technologies matérielles et logicielles européennes au niveau du calculateur, du stockage, de l'interconnexion, de l'administration, et développer les applications phare.
- Mettre en place une équipe globale de support (IDRIS/CINES/TGCC/SURF)

Performance HPL: 1+ EFlops
Consommation électrique < 20 MW
> 100 PB Flash/HDD et > 200 PB archive
2 x 100 Gb/s Renater
Cloud computing
Environnement sécurisé
Quantum-computing coupling
Equipe support de 15 experts
TCO 5 ans: 542 M€ (50% EuroHPC)
EuroHPC est propriétaire de la machine

Feuille de route du projet Jules Verne

Projet en 3 phases

Dec 2022 AMI EuroHPC Fev 2023 Fin du call Mai 2023 Audition Juin 2023 Sélection Fin 2023

Signature des conventions

2019-2022

Phase préparatoire (Pour/Contre, applications, coût, faisabilité, ...) T4 2022 - T1 2023

Réponse à l'AMI (GENCI & associés, SURF) T1 2023 - T4 2023

Audition, sélection, contractualisation

T3 2023 - T4 2024

Adaptation du TGCC, Benchmarks, Spécifications, Appel d'offre (EuroHPC), dialogue compétitif, Achat

Oct 2023 Adaptation du site Début 2024

Appel d'offre calculateur

T1 2025 - T4 2025

Adaptation de la salle de calcul, Installation, Tests

Mi-2025 Installation Nov 2025

Fin 2025

Top500

Début mise en prod

2026 - 2030

Phase opérationnelle

Un écosystème riche

- Infrastructure :
 - □ PRACE: Tier0 au TGCC, formation avancée @MDLS, ...
 - PPI4HPC: cofinancement Joliot-Curie Phase 2@TGCC
 - ☐ ICEI/FENIX: cofinancement de la partie TGCC Cloud (interactive computing, object storage)

- □ EPI SGA2 (2022-2025, 70M€): développement d'un processeur européen pour le HPC, HPDA, IA, ...
- **SEA** (2021-2024): **Software for Exascale Architecture**
 - DEEP-SEA (15M€): environnement de programmation bas niveau, gestion des ressources, abstraction pour les configurations hétérogènes
 - RED-SEA (8M€): développement d'un réseau d'interconnexion basé sur le BXI
 - DO-SEA (8 M€): plateforme de **gestion et de stockage des données** permettant le passage à l'échelle
- **EUPEX** (2022-2025, 40M€): conception d'un **système pilote** modulaire intégrant les technologies européennes et préparant les applications à l'exascale
- Logiciels et applications :
 - **NUMPEX** (2023-2029, 40M€): conception et développement de briques logicielles pour l'exascale
 - CExA (2023-2025, 1,5M€): interface CEA pour le calcul sur GPU
- Groupes de réflexion:
 - ETP4HPC: Orientations stratégiques (livres blancs, Strategic Research Agenda) sur la recherche et innovation pour les technologies HPC en Europe. ETP4HPC est un membre privé d'EuroHPC.
 - SP3 projet Exascale France: synthèse des domaines applicatifs et applications prioritaires

Le Très Grand Centre de calcul du CEA

- Construit en 2010 pour accueillir des machines de calcul de grande taille
- Salles des machines : 2 x 1300 m², zones techniques : 3000 m²
- Alimentation électrique : 12 MW configurés, nœud Renater (100 Gbit/s, 2023)
- Espace de communication : salles de réunion, amphithéâtre de 200 places

> Un site, deux systèmes multi-pétascales pour la recherche et l'industrie

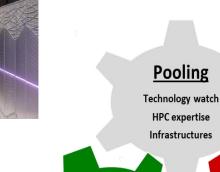
> Une équipe HPC mutualisée : conçoit les installations et leurs infrastructures, co-développe des briques technologiques avec les fournisseurs HPC, exploite les supercalculateurs, fournit du support aux utilisateurs.

Pooling

HPC expertise

Infrastructures

5 computing partitions: SKL, KNL, Rome, A64FX,V100


GENCI

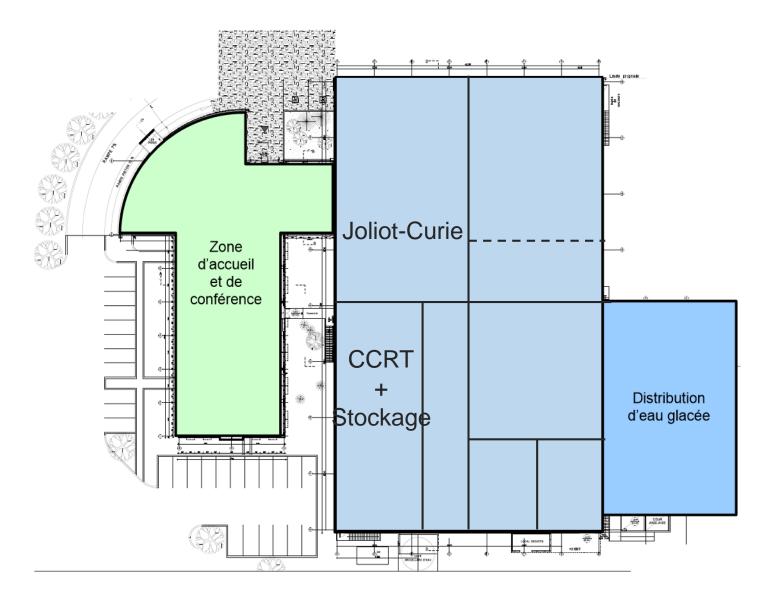
Atos

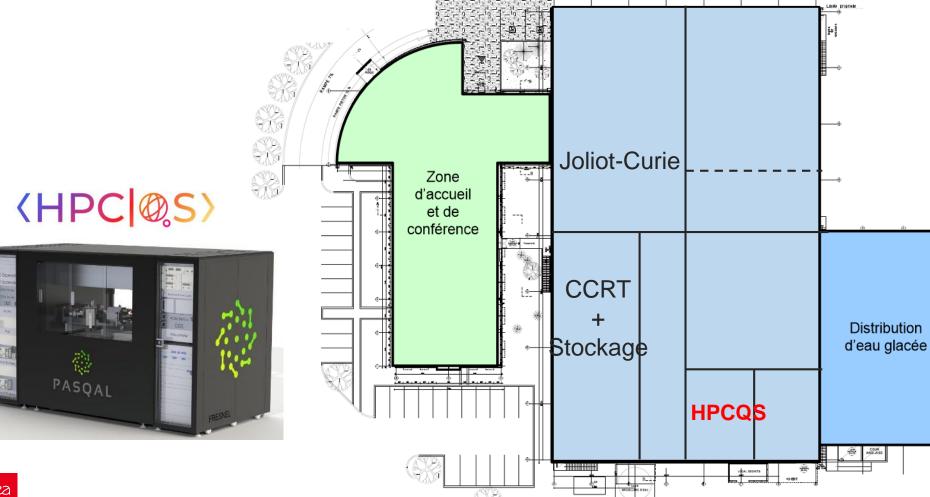
+ QLM

Joliot-Curie (*) ~22 Petaflop/s 5 PB @ 300GB/s Academic Research France (~50%) Europe (~50%) (Tier-1. Tier-0)

Mastering the complexity of largescale computing equipments

Answering the needs of Scientific and industrial projects, for CEA and French and European



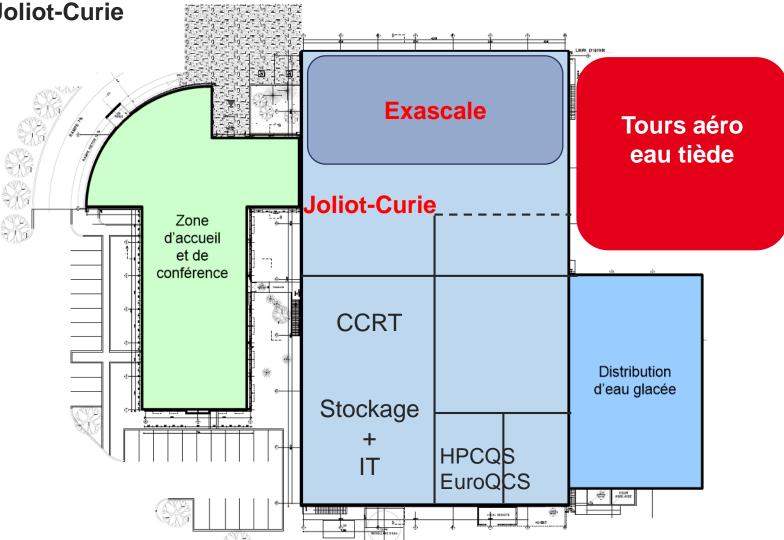


Mi-2023 situation

Fin-2023 attendu

- Quantum room
- > Pasqal QPU

Fin-2024 attendu


QPU photonique (EuroQCS) Exascale: □ environnement calculateur robotique stockage renforcement dalle béton Renforcement dalle béton refroidissement Tours aéro eau tiède Joliot-Curie Zone d'accueil et de conférence **CCRT** Distribution d'eau glacée **Stockage** HPCQS **EuroQCS**

Fin-2025 attendu

Machine exascale fonctionnelle

Démantèlement de Joliot-Curie

Conclusion

HPL performance: 1+ EFlops

Electric power consumption < 20 MW

European technology/software

Quantum-computing coupling
5 years TCO: 542 M€ (50% EuroHPC)

Le projet Jules Verne permettra de :

- Conforter la position de la France et de l'Europe sur l'échiquier mondial de la recherche
- Garantir notre souveraineté technologique et notre compétitivité industrielle
- o Relever les défis scientifiques et sociétaux actuels (changement climatiques, transition énergétique, santé, transport, matériaux, IA, ...)

Quelques défis liés au projet :

- Adapter le TGCC dans un contexte opérationnel (Joliot-Curie, CCRT, Quantique, ...)
- Réussir l'intégration de technologies matérielles et logicielles européennes
- Exploiter efficacement le supercalculateur
 - Simplifier le passage à l'échelle et la portabilité des applications, pérenniser les solutions proposées
 - Avoir des communautés en phase avec la vie de la machine exascale, faire émerger des success stories
 - · Contribuer à optimiser la consommation énergétique

