cea irfm

GyselaX++: Exascale Challenges for tokamak plasma turbulence simulations

Virginie Grandgirard

First principle simulations required for ITER

 \rightarrow Gyrokinetic plasma turbulence simulations

ITER project

GYSELA simulation

- To optimize performance and minimize risks, each ITER scenario will have to be numerically validated.
- A complete chain of numerical tools will be required, ranging from scale models, which can be used in real time, to first-principles simulations, which are more costly but more reliable.
- Turbulent transport mainly governs confinement in Tokamaks
- Tokamak plasmas weakly collisional \rightarrow Kinetic approach mandatory
 - Fusion plasma turbulence is low frequency \rightarrow fast gyro-motion is averaged out
 - Gyrokinetic approach: phase space reduction from 6D to 5D

GYSELA: a highly parallelised code running at petasoale

- Gyrokinetic codes require state-of-the-art HPC techniques and must run efficiently on several thousand processors
 - Non-linear 5D simulations (3D in space + 2D in velocity)
 - + multi-scale problem in space and time
- Even more resources required when modelling both core & edge plasmas like GYSELA
- GYSELA = Fortran 90 code with hybrid MPI/OpenMP parallelisation optimized up to 730,000 cores
 - Relative efficiency of 85% on more than 500k cores and 63% on 730k cores on CEA-HF (AMD EPYC 7763)
- Intensive use of petascale resources: ~ 150 millions of hours / year
 - (GENCI + PRACE + HPC Fusion resources)

limite

Weak scaling of GYSELA on CEA-HF

GYSELA: Exascale needs for ITER plasma turbulence simulations

■ Petascale simulations nowadays → Electrostatic simulations on ion-scale turpulence for WEST-like plasmas

		Degree of Freedom 5D mesh x #species	#iterations	#CPUs x days	Cost of 1 simulation
- Standard simulation		(512x512x64x128x64) x 2 ~ 275 billion	~ 10000 it.	~ 65k x 3.6	~ 7 Mh CPU
 Extreme simulation performed on CEA-HF → Core-edge-limiter with trapped kinetic electrons 		(1024x512x128x128x64) x 2 ~ 1100 billion	~ 6500 it.	~ 262k x 2.5	~16 Mh CPU
				\mathbf{v}	Y X

■ Huge amount of data per simu. : Handles tens Pbytes data → Only few Tbytes saved

Exascale needs for ITER plasma turbulence simulation with electromagnetic effects

Ongoing work:

AI to optimize I/O?

mesh size x 32 required for ITER

How to prepare GYSELA to HPC exascale architectures

 \rightarrow Huge efforts of optimization and porting during EoCos -H

- Target architectures:
 - 3 different architectures in the top 20
- Porting in 2021-2022 via CEA-RIKEN collaboration and **GENCI** support with ATOS
- Porting in 2022-2023 with HPE and EOLEN in the frame of ADASTRA Contrat de Progrès at CINES and with SCITAS-EPFL in the frame of EUROfusion Advanced Computing Hub
- May 2022: Opportunity to run during « Grand Challenge » campaign
- E_C_E Rpeak **NOVEMBER 2022** System Cores (Pflop/s) Rank 537.21 Supercomputer Fugaku – A64FX 48C, Fujitsu -7,630,848 2 RIKEN Center for Computational Science – Japan 11 Adastra – HPE Cray, AMD Instinct MI250X 319,072 46.10 **GENCI-CINES – France** 20 CEA-HF – BullSeguana XH2000, AMD EPYC 7763, 810,240 23.24 Atos – CEA – France Impossible without Operator refactoring (collisions, sources) + Performance optimization at node level HPC experts (vectorization, blocking, asynchronous MPI communications) \rightarrow Gain > 70%

Good performance on the 3 architectures with same Fortran code via OpenMP directives \rightarrow Not feasible without rewritting, duplication of most of the kernels

Roadmap for GyselaX++ towards exascale → Why do we choose to rewrite GYSELA?

- 20 years-old code written in Fortran with hybrid MPI/OpenMP parallelising
- Unique code for both CPU (AMD milan or ARM-A64FX) and GPU with OpenMP directives is NOT optimal → extremely difficult to optimize on all architectures.
- Non-equidistant mesh mandatory for core-edge-SOL turbulence simulations
 - \rightarrow Modifying splines in GYSELA = rewrite most of the kernels
- X-point geometry

→ Development of new semi-Lagrangian scheme required to treat multipatches

Simpler to rewrite main kernels in modern C++ from scratch → GyselaX++ code

8

Conclusions

- The GYSELA code at the era of pre-exascale for ion-scale turbulence impations for
 - Optimized up to more than 500k cores on standard CPU architecture x: MD milan)
 - Resource needs: more than 150 millions of CPU hours / year
 - Petabytes of data manipulated per simulation with huge reduction to limit the storage to two terabytes
 - \rightarrow Lot of physics still to be explored with this version of the code for the next five years.
- GyselaX++ : Rewritting in modern C++, more modular and scalable on different accelerated architectures
 - More realistic temperature gradients at the edge: Non-equidistant mesh
 - More realistic geometry: X-point
 - Based on DDC library + Kokkos